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ABSTRACT 

This thesis addresses the problem of accurately delivering radiation to the central nervous 
system while minimizing exposure to healthy organs in cancer radiation therapy (RT). 
Currently, computed tomography (CT) lacks soft-tissue contrast in the brain and may expose 
patients to additional radiation, whereas magnetic resonance imaging (MRI) does not contain 
information for RT treatment dose calculation. To address this, we propose a solution using 
cycle-consistent GANs (CycleGANs) to synthesize synthetic CT (SynCT) images from MRI 
scans. We assess nine CycleGAN models with varying parameters using ten image similarity 
metrics, explore model training trends across all anatomical locations of a validation dataset, 
and identify the evaluation metrics most sensitive to input and model changes. To enhance 
model performance, we generated an image mask from segmented MR and CT image sets to 
indicate anatomical overlap for improved feature extraction. 

Our findings suggest that Model 7 with GAN + L1 regularization and ResNet_3 
generator structure, trained with 256 x 256 resolution patches instead of full images, is optimal. 
We also observe consistent model performance across all anatomical locations within a 
validation dataset with minor variation in extremities towards the z-direction, which is 
inconsequential in RT planning. Lastly, Spatial Correlation Coefficient (SCC), Mean Squared 
Error (MSE), and Relative Global Error (ERGAS) are identified as the most sensitive metrics 
for evaluating model performance, with Mean Absolute Error (MAE) and Root-Mean-Square 
Error (RMSE) also acceptable. 
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1. INTRODUCTION 
 
 In radiation therapy (RT), radiation needs to be delivered accurately to the planning 
target volume (PTV) to eliminate cancerous tissues while simultaneously delivering minimal 
radiation to surrounding healthy organs and prevent side effects [1]. Therefore, the accurate 
distinction between cancerous and normal tissues is essential. Currently, computed tomography 
(CT) is primarily used for RT planning, including the target localization and organ contouring, 
because the RT treatment simulation process requires dose calculations which use the tissue 
electron density information obtained from the CT [2]. However, CT lacks good soft-tissue 
contrast, especially in sites such as the brain, head and neck, and pelvic anatomical regions, 
making it extremely difficult to distinguish healthy organs from cancerous target areas [3,4]. 
In addition, multiple iterations of CT scans expose patients to additional ionizing radiation, 
which bring potentially harmful effects to patients [2]. 

Magnetic resonance imaging (MRI) is increasingly used for RT planning due to its 
superior soft-tissue contrast without non-ionizing irradiation compared to CT [2], which 
facilitates the delineation of the tumor and healthy surrounding organ. However, radiation dose 
estimation based solely on MR images is challenging because they do not provide direct 
information on electron density [5]. As well, compared with CT scans, MRI takes a much 
longer time and is more expensive [6]. Thus, given the above benefits and drawbacks of each 
imaging method, it would be optimal to collect an MR image set for delineation of the treatment 
area and surrounding healthy organs, and convert it into a synthetic CT (SynCT) data set for 
RT dose calculations and treatment plan simulation. 

Recently, there has been much research interest being directed toward the conversion 
of MRI into SynCT based on Deep Learning (DL) methods (DL).  This approach has the 
advantage of fast SynCT generation and can account for setup changes between multiple 
imaging modalities [7]. For general image applications, a convolutional neural network (CNN 
or ConvNet) is a popular class of deep neural networks (DNN) using a set of convolution 
kernels/filters for detecting image features; however, the drawback of generator-only CNN 
models is that they may lead to blurry results due to generally misalignment between MR and 
CT [7,8]. Another approach is the use of Generative Adversarial Networks (GANs) that can 
synthesize better SynCT images than previous generator-only CNN models, in which the 
generator and discriminator networks are trained simultaneously through min–max 
optimization strategy [7,9]. Previous studies noted that GANs which were trained using co-
registered MR and CT image pairs with a high degree of pixel-to-pixel anatomical correlation 
achieved higher accuracy. However, acquiring large datasets of high-quality patient image 
pairs is challenging due to practical considerations (e.g., different scanners, anatomical 
deformations, motion artifacts, etc.). Thus, previous research in SynCT generation from MR 
images have used either small, paired samples or unpaired CT and MR images [1,8,10]. 

Therefore, we propose a method to synthesize SynCT images from MR images using a 
cycle-consistent GAN (CycleGAN) framework that allows either paired or unpaired image-to-
image translation. The methodology includes the investigation of multiple model parameters 
to assess the performance of several CycleGAN models. To improve the overall model 
performance, the raw MR and CT image sets are first segmented to generate an image mask to 
indicate the anatomical overlap across both images. This pre-processing step enables the 
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extraction of anatomical features and avoid imaging artifacts and non-anatomical structures, 
making the DL modelling more accurate and efficient. Since the input data quality is improved, 
this will ensure less training data is required to generate a high-quality SynCT model. 

 
2. METHODS AND MATERIALS 
 
2.1 Data Acquisition 

The dataset used in this study was evaluated and approved by the research ethics board 
(REB) of the Princess Margaret Cancer Centre. Our dataset consisted of 50 cases of paired CT 
and 3T MR image series which were previously acquired on patients receiving radiotherapy 
for brain tumors. The CT and MR image voxel size was 1 mm3 and 1.2 x 1.2 x 1mm3, 
respectively. Of the 50 MRI–CT image pairs, 76% (38 pairs) were used for network training 
and the remaining 24% (12 pairs) were used for testing and validation.  

 
2.2 Data Preprocessing 

The MR and CT datasets were rigidly co-registered in the RayStation v9A (RaySearch, 
Stockholm, Sweden) treatment planning software as per the brain RT clinical protocol. Since 
the MR and CT image series were acquired and formatted with different parameters, additional 
image processing steps were conducted to generate a slice-to-slice rendering of the same 
anatomy in the two imaging modalities. Specifically, the MR data sets were resampled into the 
CT frame of reference (i.e., image orientation and resolution) by using scripts based on 
IronPython in RayStation. 

Furthermore, the MR and CT were segmented in RayStation to delineate only the 
anatomy that was common to each paired dataset. This step was necessary to increase accuracy 
of the DL model training and reduce computation time.  

Once all CT and MR data sets were pre-processed, the DICOM images and 
corresponding RT structure files containing the anatomical contours were exported from 
RayStation and used for DL model training and validation.   

The DL pipeline consists of three key components: (a) pre-processor, (b) module for 
DL training and analysis for an arbitrary model, and (c) post-processor. The pre-processor reads 
in the DICOM file data, assigns a value to all points in the patient contour - 1 for points on or 
within the anatomical boundary, and 0 for points outside the boundary, and then stores these 
values in a data array. This represents image masks that embeds the DICOM coordinates of the 
external body anatomical contours. The binary masks also correspond directly to the MR and 
CT images as shown in Figure 1. Of note, the area of interest within the contour appears white, 
whereas the area outside of the boundary appears black. The mask serves as a guide to extract 
paired data from the MR and CT images, i.e., pixel information within the mask overlaid on 
both CT and MR image slices. This will ensure that input to the CycleGAN model will include 
only the anatomical structures that both the CT and MR have in common and excludes non-
anatomical information present in the images such as the rendering of the CT diagnostic table, 
patient immobilization mask (where present) and imaging artifacts, etc. 
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   (a)     (b)           (c) 

Figure 1. Example of data pre-processing step prior to DL model training and validation: (a) 
reference MR image, (b) binary mask corresponding to the same anatomical area from both 
MR and CT images, and (c) reference CT image. All images correspond to the same slice within 
the patient anatomy. 

 
Several flavors of GAN models were investigated as discussed in Section 2.3. The post-

processor re-formatted the SynCT image data generated by the GAN models to facilitate testing 
and validation. The SynCT data was further processed as DICOM files similar to the MR and 
CT image data series used for training. This allowed DICOM data import and analysis for RT 
specific applications within RayStation. 
 
2.3 Model Architecture 

Generative adversarial networks (GANs) are neural network architectures that consist 
of two sub-networks: G, a generator and D, a discriminator. G learns a mapping from a latent 
variable z (typically random noise) to an image y in a target domain, and D learns to 
discriminate the generated image G(z) from the real image y [12]. During the training of a 
GAN, both G and D, are learned simultaneously, with G aiming to generate images that are 
indistinguishable from the real images, and D aiming to tell apart generated and real images 
[13].  

CycleGAN is a type of GAN that consists of two generators (G1 and G2) and two 
discriminators (D1 and D2), the architecture applied in this study is as shown in Figure 2. 

 

  
Figure 2. Overall structure of the CycleGAN model. 
 

To train the model, a paired input CT-MR dataset was fed into the architecture with a 
learning rate of 0.0002 and the split factor of 0. All models were implemented using 
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TensorFlow and trained on an NVIDIA GeForce RTX 3090 compute unit featuring 64 GB of 
memory. 

The main model architecture design choices investigated in this paper are the generator 
structure, discriminator structure, objective losses for paired training, and image training size. 
Firstly, a commonly used generator’s architecture is the conventional U-Net; however, ResNet 
has proved to be more versatile for the SynCT image synthesis problem [14], specifically it is 
easier to optimize and can gain enhanced accuracy from considerably increased depth. 
Therefore, in this study, the generator neural architectures of all CycleGAN model investigated 
were chosen as variations of ResNet in terms of the number of layers. Next, the same 
discriminator - PatchGAN, described in Section 2.3.2 was used for all experiments. 
Furthermore, there are two types of losses explored in this paper – (a) GAN + L1 loss, and (b) 
L1 loss. In the following sections, these factors will be further elaborated upon. Lastly, the 
image size input is varied to be either 256 x 256 or 512 x 512 to assess the model performance 
across different input sizes, where 512 x 512 refers to data being resampled in patches of 256 
x 256 across the entire image. 

A total of nine CycleGAN models were investigated in this study, each with varying 
design parameters that were trained and tested with the same datasets, and their individual 
performance was evaluated using image similarity metrics. The model specifications are shown 
in Table 1. 
 
Table 1. Specifications for each of the 9 CycleGAN models to be tested. 

Model Regularization 
Method (Loss) 

Generator  
Neural Architecture 

Training Image Size 

1 L1 ResNet_9 256 x 256 

2 L1 ResNet_6 256 x 256 

3 L1 ResNet_3 256 x 256 

4 GAN + L1 ResNet_12 256 x 256 

5 GAN + L1 ResNet_9 256 x 256 

6 GAN + L1 ResNet_6 256 x 256 

7 GAN + L1 ResNet_3 256 x 256 

8 GAN + L1 ResNet_9 512 x 512 
(patches of 256 x 256) 

9 L1 ResNet_9 512 x 512 
(patches of 256 x 256) 
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2.3.1 Generator Structure 

To assess the effect of network size on the model performance, different ResNet 
generator models - ResNet_3, ResNet_6, ResNet_9 and ResNet_12 are investigated in this 
paper. 
 
ResNet_3 
Inspired by [15], the generator is structured as a sequence of a number of convolutional layers, 
residual blocks and fractionally strided layers. In particular, our network consists of three 
convolutional layers, three residual blocks, two fractionally strided convolutional layers, and 
one final convolutional layer. The guideline provided in [16,17] is used to select the scheme of 
each layer. The detailed structure of the network is as follows: 
 
Relu-INorm-CF64K7S1 → Relu-INorm-CF128K3S2 → Relu-INorm-CF256K3S2 → 3 × 
RF256K3S1 → Relu-INorm-SCF128K3S2 → Relu-INorm-SCF256K3S2 → Tanh-CF1K7S1 
 

In the above notation, Relu denotes the rectified linear unit activation function, INorm 
denotes instance normalization, CFαKβSµ represents a convolutional layer with α filters, 
kernel size of β and stride µ. Similarly, SCFαKβSµ denotes a fractionally strided convolutional 
layer. RFαKβSµ shows a residual block following the structure recommended in [18]. Note 
that tangent hyperbolic (Tanh) function is used at the last layer to map the output to the range 
of [-1, 1]. The generator architecture for ResNet_3 is shown below in Figure 3 above, with the 
residual blocks being represented in red boxes. 

 

 
Figure 3. Model architecture of the Generator. Example is for ResNet_3. Input image of 512 x 
512 refers to data being resampled in patches of 256 x 256 across the entire image. 
 
ResNet_6, ResNet_9 and ResNet_12 
In addition to ResNet_3, we have also explored ResNet_6, ResNet_9, and ResNet_12 as 
alternative generator structures. The model structures are similar to that of ResNet_3, with the 
only difference being the number of residual blocks. Instead of having 3 RF256K3S1 residual 
blocks, ResNet_6, ResNet_9 and ResNet_12 would have six, nine and twelve of such structures 
each, respectively. In reference to Figure 3, this means the number of residual blocks (coloured 
in red) would change, depending on the generator structure selected. 
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2.3.2 Discriminator Structure 

 
Figure 4. Model architecture of the Discriminator. Input image of 512 x 512 refers to data 
being resampled in patches of 256 x 256 across entire image. 
 

The discriminator is selected as a PatchGAN [19] to recover the high frequency details 
of the image and produce sharper images, as the L2 norm generally cares only about the low-
level information. Instead of labelling the whole image with a scalar using a classifier, in a 
PatchGAN the input image is divided into a number of overlapping patches, and the structure 
assigns a label to each patch in the output. Comparing real versus fake patches by the 
PatchGAN discriminator directs the generator to synthesize sharper images with high 
frequency content similar to the real ones. The discriminator is structured with six 
convolutional layers as follows: 
 
LRelu-INorm-CF64K4S2 → LRelu-INorm-CF128K4S2 → LRelu-INorm-CF256K4S2 → 
LRelu-INorm-CF512K4S2 → CF1K4S1 
 
The discriminator architecture is shown in Figure 4. 

 
2.4 Objective Losses for Paired Training 
 
2.4.1 GAN + L1 Loss 
In this structure, the basic assumption is that corresponding CT and MR slice images of the 
same anatomy are available for network training. Our structure consists of a generator 
synthesizing images from MR to CT domain (M2C: MR → CT). Moreover, there is a 
discriminator called DCT, which is trained to classify the fake images against the real ones. The 
discriminator performance is deployed as a critic and the generator is trained towards 
synthesizing real-looking CT images and consequently fooling the discriminator.  

Mathematically speaking, DCT is trained to minimize the loss: 
 
𝐿!!"(𝐷"#) = 1/2	𝐸"#~%#$%$("#)[‖𝐷"#(𝐶𝑇) − 1‖

(] + 	1/
2	𝐸)*~%#$%$()*)[‖𝐷"#(𝑀2𝐶(𝑀𝑅))‖

(]        (1) 
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where pdata (CT) and pdata (MR) denote the distributions of the CT and MR images, respectively. 
In other words, DCT is trained to label the real CT images as 1 and synthetic images as 0. Note 
that, as proposed by [20], and in order to have a stable training process, here the adversarial 
loss given in equation (1) has been defined in the form of L1 norm, instead of logarithmic 
formulation. On the other hand, the generator M2C is trained to synthesize images which 
cannot be distinguished from the real CTs by DCT. More precisely, it must minimize the 
adversarial loss:    
 

𝐿+,-,"# 	(𝑀2𝐶) = 	𝐸)*~%#$%$()*)[‖𝐷"#(𝑀2𝐶(𝑀𝑅)) − 1‖
(]             (2) 

 
Training using just this adversarial loss, the M2C only tends to generate images with 

features similar to the CT domain. In fact, this loss is not able to constrain the generator on its 
own to synthesize a CT image corresponding to the input MR. So, another loss term is required 
to put such a constraint on the generator training [16,17]. This loss is defined as a pixel-wise 
L1 distance between the synthesized CT and its corresponding ground truth. Let PCT : MR → 
CT denote the operator which returns the corresponding paired CT of the given MR. Then, L1 
loss is defined as:   

 
𝐿,/0,"#(𝑀2𝐶) = 𝐸)*~%#$%$()*)[‖𝑀2𝐶(𝑀𝑅) − 𝑃"#(𝑀𝑅)‖]                      (3) 

 
Using the above equations, total generator loss is re-defined as: 
 
𝐿123(	𝑀2𝐶) = 𝐿+,-,"# 	(𝑀2𝐶, 𝐷"#) + 𝜆"#𝐿,/0,"#(𝑀2𝐶)     (4) 

 
where λCT ∈ R+ is a factor to balance the losses. So, the discriminator and generator in this 
paired-data GAN structure are optimized using the following equations: 
 

𝐷"# =	𝑎𝑟𝑔	𝑚𝑖𝑛	!4!" 		𝐿!!">𝐷?"#@         (5) 
𝑀2𝐶 = 	𝑎𝑟𝑔	𝑚𝑖𝑛	)("5		𝐿123>𝑀2𝐶A@         (6) 
 

2.4.2 L1 Loss 
In this structure, no discriminator is incorporated in the structure. In other words, generator 
M2C is trained aiming at minimizing only the pixel-wise L1 distance between the synthesized 
CT and its corresponding ground truth, formulated as equation (3). Therefore, the generator is 
optimized based on the following equation: 
 

𝑀2𝐶 = 	𝑎𝑟𝑔	𝑚𝑖𝑛	)("5		𝐿123>𝑀2𝐶A@        (7) 
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2.5 Evaluation Metrics 
 

Ten indicators have been used to evaluate the SynCT generation models – namely, 
structural similarity index measure (SSIM), mean absolute error (MAE), mean squared error 
(MSE), root-mean-square error (RMSE), peak-signal-to-noise-ratio (PSNR), multi-scale 
structural similarity index measure (MSSSIM), universal quality index (UQI), relative global 
error (ERGAS), spatial correlation coefficient (SCC), and visual information fidelity (VIF).  

 
2.5.1 Structural Similarity Index Measure (SSIM) 
SSIM measures the similarity of two images, in which the picture is highly structured, and 
there is a strong correlation between adjacent pixels [21,22]. The value of SSIM ranges 
between 0 and 1, where the two images are exactly alike when SSIM is 1. The formula for 
SSIM calculation is as follows: 

 
𝑆𝑆𝐼𝑀(𝑥, 𝑦) = [𝑙(𝑥, 𝑦)]7  [𝑐(𝑥, 𝑦)]8  [𝑠(𝑥, 𝑦)]9               (8) 
 

From the formula above, there are three components, where l(x,y) compares luminance; 
c(x,y) compares contrast; and s(x,y) compares structure. X represents the synthesized CT image, 
and Y represents the reference CT image. As well, α, β and γ are parameters that define the 
relative importance of the three components. L, C, and S are used to make a comparison of the 
brightness information, contrast information, and structure information between the reference 
and the synthesized CT image, respectively. 
 
2.5.2 Mean Absolute Error (MAE) 
The methodology to calculate MAE is similar to [10], with the only difference being MRI is 
being converted to CT in this paper, instead of the converse. MAE measures the average 
distance between each pixel of the synthesized and the reference MRI image; the smaller the 
MAE value, the more similar the two images are, and thus the better the SynCT generation 
model. The reference image, CT and synthesized CT images, M2C(MR), were compared using 
the mean absolute error (MAE), which is defined as follows: 

𝑀𝐴𝐸 = :
3
∑ ‖ 𝐶𝑇(𝑖) − 𝑀2𝐶>𝑀𝑅(𝑖)@‖3;:
/<=        (9) 

where i is the index of the 2D axial image slice in the aligned voxels and N is the number of 
slices in the reference CT images.  
 
2.5.3 Mean Squared Error (MSE) 
MSE measures the average squared distance between each pixel of the synthesized and the 
reference MRI image. Since the error between the reference and synthesized CT images might 
be negative, MSE is used to avoid negative numbers and the formula is defined as follows [23]: 
 

𝑀𝑆𝐸  =   :
3
  ∑ L𝐶𝑇 (𝑖)  −  𝑀2𝐶>𝑀𝑅 (𝑖)@M

(
3;:
/<=                 (10) 
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where i is the index of the 2D axial image slice in the aligned voxels and N is the number of 
slices in the reference CT images; the smaller the MSE value, the more similar the two images 
are. 
 
2.5.4 Root-Mean-Square Error (RMSE) 
RMSE is used to measure the difference between the source CT image and the synthesized CT 
image; the smaller the value of RMSE, the more similar the two images are [24]. The formula 
for RMSE is as follows: 

 

𝑅𝑀𝑆𝐸 = N∑ ∑ ?@)("()*)(/,A)B;"#(/,A)C&'
()*

+
()*

)D3
                (11) 

 
where M and N are the size of the image, i and j are the pixel positions in the image. 
M2C(MR)(i,j) is the synthesized CT image and CT(i,j) is the original CT image. 
 
2.5.5 Peak-Signal-to-Noise-Ratio (PSNR) 
PSNR is the ratio between the maximum power of a signal to the maximum power of a noise 
signal and it is an excellent measure of quality for white noise distortion [23,25]. It is mainly 
used to evaluate the sensitivity error of synthesized CT images’ quality, and it is an important 
indicator to measure the difference between two images [22,26]. The larger the PSNR value, 
the more similar the two images are. The formula for PSNR is as follows: 
 

𝑃𝑆𝑁𝑅 = 20	𝑙𝑜𝑔:= L
E&

)FG
M	                 (12) 

MSE represents the mean square error of the reference and synthesized CT images, whereas L 
is the dynamic range of the image pixels [23]. 
 
2.5.6 Multi-Scale Structural Similarity Index Measure (MSSSIM) 
MSSSIM was introduced as a means for including image details at different scales [27], since 
the multi-scale method is a convenient way to incorporate image details at different resolutions. 
Similar to SSIM, the value of MSSSIM ranges between 0 and 1, where the two images are 
exactly alike when MSSSIM is 1. 

MSSSIM has the same components and parameters as SSIM, but the key difference is 
that MSSSIM evaluation is obtained by combining the measurement at different scales using 
the following formula: 

 

𝑀𝑆𝑆𝑆𝐼𝑀(𝑥, 𝑦) = [𝑙)(𝑥, 𝑦)]7+ ⋅ ∏ T𝑐A(𝑥, 𝑦)U
8,T𝑠A(𝑥, 𝑦)U

9,)
A<:             (13) 

 
where M is the maximum scale, and j is the j-th scale. 
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2.5.7 Universal Quality Index (UQI) 
UQI is global rather than being local or specially intended to the images being tested or on the 
individual observers [23]. The value of Q ranges between [−1, 1], where the two images are 
exactly alike when the quality index, Q is 1. Q is defined as: 
 

𝑄 = HI-.	D	J
@I-&KI.&B((	D)&K(	J)&)

                        (14) 

 
where 𝑥	and 𝑦	are the mean values of the original and synthesized CT images, respectively;  

and  are the variances, and  is the covariance.  
 
2.5.8 Relative Global Error (ERGAS) 
ERGAS is used to compute the quality of the synthesized CT image in terms of normalized 
average error of each band of the processed image [28]. Increase in the value of ERGAS 
indicates distortion in the synthesized image; the lower the ERGAS value, the more similar the 
synthesized CT image is to the reference CT image. ERGAS is calculated as follows: 
 

𝐸𝑅𝐺𝐴𝑆 = 100 *+&!(+0)
*!"

N:
L
∑ L*)FG(/)

&

MN+L(/)&
ML

/<:               (15) 

 

 is the ratio of spatial resolution size of the synthesized CT to the reference CT, and 
n refers to the n-th spectral band. 
 
2.5.9 Spatial Correlation Coefficient (SCC) 
SCC indicates the spatial correlation between the reference and synthesized CT images, which 
is also the correlation degree between the two images [22,29]. The SCC value ranges between 
0 and 1, where the reference and synthesized CT images are exactly alike when SCC is 1. The 
SCC formula is as follows: 
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              (16) 

 
 denotes the mean value of the reference CT while  denotes the mean value of 

the synthesized CT image, M2C(MR).   
 
2.5.10 Visual Information Fidelity (VIF) 
VIF is an image quality metric that uses information theoretic criterion for image fidelity 
measurement [30,11]. In an information-theoretic framework, the information that could 
ideally be extracted by the brain from the reference image and the information lost due to 
distortion are quantified in the VIF method using natural scene statistics (NSS), the human 
visual system (HVS), and an image distortion (channel) model [11].  
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The VIF is derived from a quantification of two mutual information quantities: the 
mutual information between the input and the output of the HVS channel when no distortion 
channel is present (called the reference image information) and the mutual information between 
the input of the distortion channel and the output of the HVS channel for the test image. The 
VIF value is represented using a value between 0 and 1, where the reference and synthesized 
CT images are exactly alike when VIF is 1. 
 
  



 

18 
 

3. RESULTS AND DISCUSSION 
 
3.1 Model Training 
 
In support of the usage of CycleGANs in SynCT generation, sample test images of different 
anatomical locations - including the most challenging areas to be rendered and generated, are 
included in this section to demonstrate the high-quality SynCT outputs generated from 
CycleGAN models with varying parameters. Visually, the outputs of these models are virtually 
indistinguishable from the reference images, which is illustrated by the slice sampling for the 
validation dataset in both the axial and sagittal views.  

Figure 5 illustrates sample test results of the M2C network, with an input MR image 
size of 256 x 256. Given that (a) represents the raw input MR image, (h) is the real CT image, 
and (b) to (g) is the SynCT by various models with an increasing number of epochs, we notice 
the M2C network can generate a high-quality SynCT that closely represents (h) starting at 
epoch 200. Of note, the model rapidly improves and quality of the SynCT minimally improves 
after epoch 200. Similarly, Figure 6 illustrates sample test results of the C2M network with the 
same input size. Given that (a) to (h) are similar to that of Figure 5, we notice that the C2M 
network is able to generate a high-quality SynMR that closely resembles (h) starting at epoch 
200. Hence, it is sufficient to train both the M2C and C2M for approximately 200 epochs. 

Figure 7 shows five rows of images with a resolution of 512 x 512 representing test 
results generated using various M2C models with GAN + L1 loss that were specified in Table 
1. Each row represents a slice, which refers to a different location in the anatomy. For each 
anatomical slice, there is (a) an original MR image, (b) original CT image, and (c), (d), (e), (f), 
and (g) are the results of Models 8, 4, 5, 6, and 7, respectively. From Figure 7, Slice 3 (third 
row from the top) was the most challenging slice to be successfully converted into a SynCT, 
because it has the highest gradient of bone structure. Thus, it has the most complex rendering 
of anatomical structures compared to the other slices – especially when it is contrasted with 
Slice 5 in the last row. And yet, the model output appears almost identical to (b). Where Figure 
7 represents the axial view of the brain, Figure 8 illustrates its sagittal view for the same case 
given the same loss and input image size. Similarly, each row represents a slice, and (a) to (g) 
are similar to that of Figure 7. In Figure 8, Slice 2 has the most complex anatomical rendering 
due to the gradient of its bone structure especially when compared to Slice 4, and its SynCT 
output also closely resembles (b), the reference CT image. 
 Figure 9 illustrates the axial view of the brain using test results with an image resolution 
of 512 x 512 that were generated using models trained with both GAN + L1 and L1 losses. The 
model specifications are detailed in Table 1. The same slices in Figure 7 are displayed here, 
with the key difference being Figure 7 only showcased models with GAN + L1 loss, whereas 
Figure 9 displays results for models with both loss types. Similar to Figure 7, each slice has (a) 
an original MR image and (b) original CT image, but in Figure 9, (c) and (d) are the results of 
Models 1 and 5, respectively. Visually, (c) and (d) - the images produced by both models, 
appear to be nearly identical. Next, Figure 10 represents the sagittal view of the slices illustrated 
in Figure 9. Here, we observe that the image produced by Model 5 (d) visually appears to have 
better quality anatomical rendering than Model 1 (c). In later sections, the performance of these 
models will be quantitatively evaluated and compared using the ten image similarity metrics. 
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Figure 5. Sample images of 256 x 256 resolution highlighting the M2C progress of the 
CycleGAN + L1 model training: (a) MR input image and progress of SynCT images as 
generated at epochs (b) 1, (c) 20, (d) 50, (e) 200, (f) 300, (g) 400. (h) reference CT image.  

 
 

  
Figure 6. Sample images of 256 x 256 resolution highlighting the C2M progress of the 
CycleGAN + L1 model training: (a) CT reference image and SynMR images generated at 
epochs (b) 1, (c) 20, (d) 50, (e) 200, (f) 300, (g) 400. (h) reference MR image. 
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Figure 7. Samples of SynCT results from M2C generators trained with GAN + L1 methods: (a) 
Original MR - (b) Original CT - (c) Result of Model 8 - (d) Result of Model 4 - (e) Result of 
Model 5 - (f) Result of Model 6 - (g) Result of Model 7. See Table 1 for Model specifications. 
 

 
Figure 8. Sagittal view samples of SynCT results from M2C generators trained with GAN + L1 
methods: (a) Original MR - (b) Original CT - (c) Result of Model 8- (d) Result of Model 4 - (e) 
Result of Model 5 - (f) Result of Model 6 - (g) Result of Model 7. See Table 1 for Model 
specifications. 
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Figure 9. Samples of test results, from generators trained with GAN + L1 and L1 methods 
mentioned in Table 1: (a) Original MR - (b) Original CT - (c) Result of Model 1 – (d) Result 
of Model 5. 
 

 
Figure 10. Sagittal view samples of test results, from generators trained with GAN + L1 and L1 
methods mentioned in Table 1: (a) Original MR - (b) Original CT - (c) Result of Model 1 - (d) 
Result of Model 5. 
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3.2 Image Similarity Analysis 
 
3.2.1 Comparison of model performance 
Given that each case consists of eighty-eight slices, we obtained the average value for each 
evaluation metric across all slices in this validation dataset. In doing so, we generated a single 
data point that represents the model performance for each case to compare the relative 
performances of the nine models. 

Figures 11, 12, and 13 show the results of the image similarity analysis for Case 1 across 
all nine models listed in Table 1, with all the metric values being normalized relative to the 
maximum for each metric value in the respective model. This was done to ensure that all data 
can be displayed in the same plot, and that there can be a fair, relative comparison of model 
performance. The raw data can be found in Appendix A.1. As per Section 2.3, this thesis aims 
to investigate the impact of three model parameters on its performance – (a) regularization 
method, (b) generator architecture, and (c) input image size. Figures 11 and 12 indicate the 
model performance comparison when the regularization method is varied, whereas Figure 13a 
and 13b illustrates the model performance when the ResNet structure and input image size is 
varied, respectively – with the remaining two factors kept constant.  
 Per Section 3, the ten evaluation metrics investigated in this thesis can be decomposed 
into three categories – (1) there are five metrics whereby where the SynCT is identical to the 
reference CT image when the metric value is 1, these include (a) SSIM, (b) MSSSIM, (c) UQI, 
(d) VIF and (e) SCC. (2) There are four error-related metrics, (a) MAE, (b) MSE, (c) RMSE 
and (d) ERGAS, where the smaller metric value indicates better model performance. (3) The 
larger the PSNR value, the better the model performance. 
 
Regularization Method 
From Figures 11 and 12, both GAN + L1 and L1 losses exhibit similar performances for SSIM, 
MSSSIM, UQI and VIF, but GAN + L1 slightly outperforms L1 based on SCC. Next, GAN + 
L1 outperforms L1 based on all four error-related metrics, except for the case where Model 2 
(L1 loss) outperforms Model 6 (GAN + L1 loss) in Figure 11b. For PSNR, there is minimal 
variation between the two types of loss.  

Hence, the evidence suggests GAN + L1 is the superior regularization method. Even 
though the images produced by Models 1 and 5 appeared to be nearly identical in Figure 9, the 
quantitative data from Figure 12a suggests that Model 5’s performance is superior to that of 
Model 1. This aligns with the observation based on Figure 10 in Section 3.1. 
 
Generator Architecture 
Comparing ResNet_3, ResNet_6, ResNet_9, and ResNet_12 for an input size of 256 x 256 with 
GAN + L1 loss in Figure 13a, we discovered that ResNet_3 outperforms all other ResNet 
variations on all ten metrics. For SSIM, MSSSIM, UQI, VIF and SCC, ResNet_3 produces 
values that are closest to 1 – which means that the SynCT is nearly identical to the reference 
CT image. Next, for MAE MSE, RMSE, and ERGAS, ResNet_3 produces the smallest error 
value, and it produces the largest value for PSNR.  
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Hence, ResNet_3 is the recommended generator architecture. This finding is 
significant, because this means that increasing the size of the ResNet structure is unlikely to 
yield any additional advantages. Thus, a deeper neural network is not necessary to produce a 
high-performing model that generate high-quality SynCT outputs. 

 
Input Image Size 
As demonstrated in Figure 13b, the input image size had minimal impact on SSIM, MSSSIM, 
UQI, SCC, PSNR, and MAE for two models with an identical ResNet structure (ResNet_9) 
and regularization method (GAN + L1). However, there were some performance differences 
based on image size for four metrics – the model with an input image size of 256 x 256 performs 
better for VIF and ERGAS, but the model with an input size of 512 x 512 performs better for 
MSE and RMSE.  

Since MSE is one of the most sensitive metrics as per Section 3.2.3 and the relative 
performance gap between Model 5 and Model 9 based on MSE is more significant compared 
to that of the other metrics, we infer that using input images with a resolution of 512 x 512 
(patches of 256 x 256) tends to improve the model performance metrics. 
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(a)        (b) 

Figure 11. Image similarity results for GAN + L1 vs L1 loss: (a) Model 3 (L1) and Model 7 
(GAN + L1), ResNet_3, input size of 256 x 256 – (b) Model 2 (L1) and Model 6 (GAN + L1) 
ResNet_6, input size of 256 x 256. 
 

 
(a)        (b) 

Figure 12. Image similarity results for GAN + L1 vs L1 loss: (a) Model 1 (L1) and Model 5 
(GAN + L1), ResNet_9, input size of 256 x 256 – (b) Model 8 (L1) and Model 9 (GAN + L1) 
ResNet_9, input size of 512 x 512. 
 

 
(a)        (b) 

Figure 13. Image similarity results for ResNet structure and input image size: (a) Models 7 
(ResNet_3), 6 (ResNet_6), 5 (ResNet_9), and 4 (ResNet_12), GAN + L1 loss, input size of 256 
x 256 – (b) Models 5 (256 x 256) and 9 (512 x 512), ResNet_9, GAN + L1 loss. 
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3.2.2 Image similarity analysis for multiple slices  
Next, using the same validation dataset (Case 1) as in Section 3.2.1, we explored the model 
performance across all eighty-eight slices of the dataset, which was generated using Model 5. 
Since the anticipated trend in metrics across the slices within a dataset is expected to remain 
consistent across all models, it is sufficient to analyse one model and the choice in the example 
model is immaterial. The raw data for each of the ten image similarity metrics were represented 
in Figure 14.  

From Figure 14, we noticed that the SSIM, MSSSIM, VIF, UQI, and SCC values were 
stable, which indicates that the model performed equally well across all slices. However, there 
exists a large variation in the MAE, MSE, RMSE, and ERGAS values, with little variation in 
the PSNR value, which indicate inconsistent model performance across slices in this validation 
dataset based on these metrics. Based on the four error metrics (a) MAE, (b) MSE, (c) RMSE 
and (d) ERGAS, the error values tend to decrease towards the end of the dataset, which 
indicates that there is an increase in image quality, starting at around Slice 45 for most of these 
metrics – which is the middle of the dataset.  

Overall, the model demonstrates consistent performance across all slices within the 
dataset, with some variations in the extremities towards the z-direction. Given that most metrics 
indicate that there is high-quality data in the middle of the dataset as illustrated by the flatter 
trends in the middle, it is likely that the values at the extremities of the dataset change as the 
patient position changes. A possible explanation for this is that Slice 0 corresponds to the 
vortex, which has less anatomical information, whereas Slice 88 corresponds to an area with 
potentially incomplete information between all the datasets that are used for training. Hence, 
the image similarity analysis data may be skewed for the anatomical extremities. A potential 
area of improvement is to increase the size of the dataset to include more information for these 
extreme areas. However, for the purposes of radiation therapy applications, these areas do not 
impact the treatment plan dose calculations as they are located away from the target area. Thus, 
further increasing the dataset may not be crucial for practical applications of the model. 
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Figure 14. Image similarity results across all slices for Case 1 using Model 5 
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3.2.3 Image similarity analysis for multiple validation cases  
Moreover, we investigated the image similarity results generated using Model 5 to rank the 
metrics in terms of their sensitivity towards changes in the model, based on a sample population 
of twelve cases. As per the sample test image visualizations in Section 3.1, using only thirty-
eight training datasets is sufficient to generate a high-performing model. This indicates that a 
dataset size in the tens is adequate to generate high-quality SynCT outputs, thus a large training 
dataset is not required to produce a good SynCT model. 
 To ensure a fair and clear comparison between the metrics, we visualized the metric 
values on the same plot in Figure 15 – with five metrics each in Figures 15a and 15b. The 
metric values are normalized relative to that of Case 1 to enable this single-plot representation 
because the data points varied from 0.6 to 10,000 across the twelve validation datasets. The 
raw data can be found in Appendix A.2.  
 From Figure 15, we observed that SCC showed the largest variation, which means that 
it is the most sensitive to changes in the models compared to the other metrics like SSIM, 
MSSSIM, UQI, and VIF from Figure 15a, as well as PSNR, MAE, and RMSE from Figure 15b 
that have the smallest relative spread. When combined with the finding from Section 3.2.2; it 
is noted that SCC has minimal variation across all slices within a single validation dataset, but 
it is very sensitive to the changes across multiple datasets. From Figure 15b, we noticed that 
MSE and ERGAS has a moderate relative spread that is only less significant than that of SCC. 
Figure 16 illustrates the results for SCC, MSE, and ERGAS to compare their sensitivity.  
 Overall, the three metrics demonstrated similar trends across various test cases in Figure 
16, however is interesting to note that when compared against the other metrics, SCC has the 
opposite trajectory for cases 4 and 5 whereas MSE had a different trend for cases 2 and 3. 
 When evaluating the performance of machine learning models, metrics that 
demonstrate significant variation are particularly useful, as they have a greater ability to detect 
minute changes in the input data or the model itself. In this case, metrics that vary greatly across 
all test cases are said to be sensitive to even subtle changes within the model, and this sensitivity 
can make them more effective in comparing and evaluating the relative performance of 
different models. Hence, SCC appears to be the best metric for model evaluation, followed by 
MSE and ERGAS. Next, MAE and RMSE are acceptable besides the top three metrics, whereas 
SSIM, MSSSIM, UQI, VIF, and PSNR are not recommended. Based on the results for all test 
cases generated from Model 5, we assume the same conclusion can be drawn for all other 
models. 
 Hence, we reached the following conclusions regarding the comparison of model 
performance in Section 3.2.1 based on the top three most sensitive metrics – based on (a) SCC,  
GAN + L1 is the superior regularization method in Figures 11 and 12, and ResNet_3 performs 
equally well as ResNet_12 in Figure 13a. Based on (b) MSE however, ResNet_3 is concluded 
to be the optimal generator architecture in Figure 13a. Moreover, the MSE trend confirms GAN 
+ L1 as the recommended loss and suggests that an input resolution of 512 x 512 (patches of 
256 x 256 images) improves model performance in Figure 13b. Lastly, based on (c) ERGAS, 
we observe a similar trend as SCC. Based on this conclusion, Model 7 has the optimal 
parameter configuration, however its input image size needs to be modified to be 512 x 512 to 
improve its performance.  
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 Aside from SCC, MSE, and ERGAS, Figure 13a shows that MAE and RMSE are also 
sensitive metrics that can detect changes in the model, which can be used to compare relative 
model performance. 
 

 
(a) (b) 

Figure 15. Image similarity results across twelve cases using Model 5: (a) SSIM, MSSSIM, 
UQI, VIF, SCC – (b) MAE, MSE, RMSE, ERGAS, PSNR. 

 
 

 
Figure 16. Re-plotting SCC, MSE, and ERGAS image similarity metrics as per Figure 15 to 
highlight the trending and cross-correlation.  
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4. CONCLUSIONS 
 
In conclusion, we identified the optimal model parameter configuration for generating SynCTs 
of the central nervous system. The best-performing model is Model 7 with a ResNet_3 
generator architecture and GAN + L1 loss. However, its performance can be optimized if it was 
trained with images of 512 x 512 resolution that are patches of 256 x 256 resolution instead of 
full images with a 256 x 256 resolution, since this tends to improve model performance.  

Next, we discovered that the model performance across a single validation dataset is a 
function of slice, since the performance is dependent on the anatomical location in the dataset. 
The model performance tends to stabilize in the midsections of the dataset, whereas it varies 
towards the extremities of the dataset in the z-direction either due to lack of anatomical 
information in the vortex at the first slice, or incomplete information between training datasets 
at the final slice. In theory, the dataset can be enhanced by including more information for these 
extreme areas; however, this may not be necessary for practical applications in radiation 
therapy as these areas do not impact the treatment plan dose calculation due to their distance 
from the target area.  

Lastly, the metrics were ranked in order of their sensitivity in detecting changes to the 
input or model. The first tier of the most sensitive metrics includes SCC, MSE and ERGAS, 
followed by MAE and RMSE in the second tier, and the third tier includes SSIM, MSSSIM, 
UQI, VIF, and PSNR. The first and second tiers of metrics are recommended to be used for 
comparing the relative performance of models.  

Potential future work from this thesis includes evaluating all nine CycleGAN models 
based on their performance across the twelve validation cases, with the addition of an upgraded 
version of Model 7 that is trained on patches of 256 x 256 resolution images. Next, the study 
on SynCT generation models can be expanded by comparing the performance of CycleGANs 
against other types of GANs including conditional GANs, for both the central nervous system 
and other anatomical sites. Lastly, the study on the image similarity metrics in this thesis can 
be extended by investigating statistical correlations among them to potentially develop a novel 
metric as a combination of the ten metrics. 
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APPENDIX 
 
A.1 Raw data for Case 1 across 9 models as per Table 1 
 

Model SSIM MSSSIM VIF UQI SCC MAE MSE RMSE ERGAS PSNR MAE 
1 0.90 0.99 0.33 0.97 0.08 8.12 2528.72 44.62 6680.53 29.63 8.12 
2 0.90 0.99 0.32 0.97 0.08 8.33 2740.64 45.93 6808.00 29.47 8.33 
3 0.90 0.99 0.32 0.97 0.08 8.75 3041.55 48.61 7030.13 28.97 8.75 
4 0.90 0.99 0.32 0.97 0.08 8.19 2636.97 44.98 6717.87 29.71 8.19 
5 0.90 0.99 0.32 0.97 0.08 8.33 2691.06 45.57 6950.64 29.55 8.33 
6 0.90 0.99 0.31 0.97 0.08 8.42 2693.29 45.70 7020.16 29.49 8.42 
7 0.90 0.99 0.31 0.97 0.08 9.04 3166.92 49.74 7683.40 28.76 9.04 
8 0.90 0.99 0.30 0.97 0.08 8.31 2518.84 44.57 7154.96 29.63 8.31 
9 0.90 0.99 0.30 0.97 0.08 8.37 2690.09 45.08 6897.49 29.69 8.37 

 
 
A.2 Raw data for Model 5 across 12 test cases (average across all slices for each case) 
 

Model SSIM MSSSIM VIF UQI SCC MAE MSE RMSE ERGAS PSNR MAE 
1 0.88 0.97 0.23 0.95 0.07 15.84 6738.53 76.42 9366.71 26.15 15.84 
2 0.94 0.96 0.15 0.96 0.02 13.52 8750.99 89.68 7039.09 24.69 13.52 
3 0.90 0.97 0.22 0.96 0.06 13.76 5729.73 71.30 9582.46 26.56 13.76 
4 0.89 0.96 0.18 0.95 0.05 17.97 8419.17 89.08 12312.87 25.25 17.97 
5 0.91 0.96 0.19 0.96 0.04 14.46 7370.70 84.48 10809.15 25.59 14.46 
6 0.89 0.96 0.20 0.95 0.06 17.37 9217.81 93.55 9749.35 24.48 17.37 
7 0.91 0.96 0.20 0.96 0.05 15.69 8075.59 87.99 8519.26 24.90 15.69 
8 0.89 0.96 0.20 0.95 0.05 17.37 8625.18 90.92 9553.11 24.73 17.37 
9 0.87 0.96 0.22 0.95 0.07 16.51 7599.07 83.81 10978.16 25.63 16.51 
10 0.87 0.96 0.21 0.95 0.07 15.86 6309.18 76.56 10861.73 26.02 15.86 
11 0.90 0.96 0.18 0.96 0.04 14.35 6745.25 79.00 8610.23 25.66 14.35 
12 0.89 0.96 0.20 0.95 0.06 17.15 8028.76 86.77 11261.66 25.46 17.15 
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