
1 

University of Toronto

Undergraduate Thesis (MIE498) 

Thesis 

Review and Advancements of Truncated-
Correlation Photothermal Coherence 

Tomography (𝑻𝑪𝑷𝑪𝑻):  

Methodology, Algorithm,     
Parameter Testing, and 𝟑𝑫 Crack Imaging 

 Student: 

 Instructor: 

 Date: 

 P. Cui 

 Professor Andreas Mandelis 

 2023/04/15 



2 

Table of Contents 

1. Introduction: ................................................................................................................................................................................................. 3 

➢ 1.1 Thermography and Nondestructive Testing: .............................................................................................................. 3 

➢ 1.2 Truncated-Correlation Photothermal Coherence Tomography (𝑻𝑪𝑷𝑪𝑻): ................................................... 3 

➢ 1.3 Thesis Organization: .............................................................................................................................................................. 3 

2. Literature Review: ..................................................................................................................................................................................... 4 

3. Experimental Setup: .................................................................................................................................................................................. 7 

➢ 3.1 Measurement Setup: .............................................................................................................................................................. 7 

➢ 3.2 Optical Devices: ........................................................................................................................................................................ 7 

4. Chirp Signals and Chirp Pulse Trains: ............................................................................................................................................... 9 

➢ 4.1 Chirp Signals: ............................................................................................................................................................................. 9 

➢ 4.2 Excitation / In-Phase Chirp Pulse Train: ..................................................................................................................... 10 

➢ 4.3 Quadrature Chirp Pulse Train: ........................................................................................................................................ 11 

➢ 4.4 Some Remarks: ....................................................................................................................................................................... 12 

5. Post-Processing Algorithm: ................................................................................................................................................................. 14 

➢ 5.1 Process the Thermal Response Data: ........................................................................................................................... 16 

➢ 5.2 Process the Laser Excitation Data: ................................................................................................................................. 18 

➢ 5.3 Sync the Thermal Response and Laser Excitation Data: ...................................................................................... 20 

➢ 5.4 Generate the In-Phase Reference Data: ....................................................................................................................... 24 

➢ 5.5 Generate the Quadrature Reference Data: ................................................................................................................. 24 

➢ 5.6 Calculate the Number of Available Slices: .................................................................................................................. 24 

➢ 5.7 Calculate the Amplitude and Phase Slices: ................................................................................................................. 24 

➢ 5.8 Save the Amplitude and Phase Slices to Disk: ........................................................................................................... 30 

6. Experimental Results: ............................................................................................................................................................................ 31 

➢ 6.1 Parameter Variation Testing: ........................................................................................................................................... 31 

➢ 6.2 𝟑𝑫 Crack Imaging: ................................................................................................................................................................. 39 

7. Summary: ..................................................................................................................................................................................................... 40 



3 
 

1. Introduction: 

➢ 1.1 Thermography and Nondestructive Testing: 

Thermography is a technique that involves measuring the surface temperature variation of a sample after it is 

stimulated to determine if it has any defects. This non-invasive method of heat diffusion measurement falls 

under the umbrella of non-destructive testing, which is a broader field of investigation in mechanical 

engineering aimed at evaluating a sample's integrity without causing further damage to it. 

➢ 1.2 Truncated-Correlation Photothermal Coherence Tomography (𝑻𝑪𝑷𝑪𝑻): 

In 2014, Professor Andreas Mandelis and his team at the Center for Advanced Diffusion-Wave and 

Photoacoustic Technologies (𝐶𝐴𝐷𝐼𝑃𝑇) in the Mechanical Engineering department at the University of 

Toronto developed a novel thermographic imaging methodology called truncated-correlation photothermal 

coherence tomography (𝑇𝐶𝑃𝐶𝑇) [1]. Unlike conventional thermal imaging techniques that are limited by 

their depth-integrated results due to the parabolic nature of thermal fields, 𝑇𝐶𝑃𝐶𝑇 truncates the thermal 

response signal and slices the calculated amplitude and phase results to provide depth-localized information 

about the heat diffusion process. Over the past years, 𝑇𝐶𝑃𝐶𝑇 has demonstrated significant success in 

subsurface defect characterization in various fields, such as in healthcare for bones and teeth [2]–[8] and in 

art for marquetry [7], [9], [10]. However, this technique has not yet been applied to imaging surface cracks, 

which is what this thesis aims to investigate. Additionally, this thesis will provide a comprehensive review of 

the 𝑇𝐶𝑃𝐶𝑇 technique, introducing its current status. 

➢ 1.3 Thesis Organization: 

The following thesis is divided into 6 sections. After this brief introduction as Section 1, Section 2 will review 

the previous literature works that established the foundations of this technique. Section 3 will present the 

experimental setup of the entire process, followed by a description of the generation procedure of chirp pulse 

trains, the type of signal used by 𝑇𝐶𝑃𝐶𝑇 to excite the sample, in Section 4. Section 5 is a crucial component of 

this work as it presents the entire 𝑇𝐶𝑃𝐶𝑇 data processing algorithm and the various improvements proposed 

by the writer of this thesis. In Section 6, the methodology's ability to implement crack imaging will be 

examined, along with the process's robustness against variations in its parameters. Also, Section 6 will 

explore the technique's capability to perform 3𝐷 imaging on the crack.  
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2. Literature Review: 

Since its initial proposal in 2014 by Kaiplavil et al. [1], the 𝑇𝐶𝑃𝐶𝑇 technique has undergone significant 

developments over the past decade, finding notable applications in diverse fields such as healthcare [2]–[8] 

and art [7], [9], [10]. This section of the report provides a concise literature review covering the complete 

history of the technique's development, with an introduction to the algorithm deferred until Section 5. 

The idea of 𝑇𝐶𝑃𝐶𝑇 originated from identifying a central problem in the field of thermography [1]: The 

propagation of thermal waves is parabolic, which causes the recorded surface temperature signal to reflect 

information about the defect that is integrated over the sample’s depth rather than at a specific depth.            

To address this issue, the 𝑇𝐶𝑃𝐶𝑇 technique applies truncation to the thermal signal and slicing to the 

amplitude and phase outputs to localize the depth information of the inspected sample. Four output channels 

were proposed in this initial paper: amplitude, initial phase, peak delay time, and zero-phase delay. It was 

discovered through experiments that the amplitude channel provides the greatest range and sensitivity. A 3𝐷 

shape construction of the sample interior can then be obtained by passing the amplitude stack through a 

binarized algorithm. The experiments were carried out on various samples, including steel, bone, and skin, 

and all samples showed evidence that the 𝑇𝐶𝑃𝐶𝑇 method holds significant promise in being developed as a 

reliable 3𝐷 defect imaging modality. 

Following the first paper proposing the idea, two other works on 𝑇𝐶𝑃𝐶𝑇 published in the same year [2], [3] 

offered further insights into the technique’s ability to detect bone mineral loss. This research direction is 

noteworthy because few optical techniques offer the possibility to image hard tissues. Several additional 

parameters, such as thermal wave occupation index and mean planar amplitude, were developed to aid in the 

evaluation process. The results from 𝑇𝐶𝑃𝐶𝑇 detection were compared to the established method of x-ray 

micro-computed tomography (𝜇𝐶𝑇), and the two sets of outcomes were found to follow similar trends. The 

two papers concluded that 𝑇𝐶𝑃𝐶𝑇 has axial and lateral resolutions of 25 𝜇𝑚 and 100 𝜇𝑚 in this use case. 

Figure 2.1 presents a sample slice of the result from these investigations. 

 

Figure 2.1.    Sample Result of 𝑻𝑪𝑷𝑪𝑻 in Bone Imaging [2] 

Tavakolian et al.'s work [11] published in 2017 further clarified and improved the details of the 𝑇𝐶𝑃𝐶𝑇 

methodology, making several updates to the algorithm to elaborate its precision. The first improvement is 

that the enhanced modality can independently control the width of the truncated slice, providing more 

freedom in managing the amount of localized energy. The second improvement is that the phase channel is 

modified to produce the phase that corresponds to the amplitude peak rather than the minimum phase.  
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Additionally, the authors established a time range to ensure that the results are valid for slicing and to 

prevent any mixing of results due to cross-correlating the thermal signals with adjacent pulses of the 

reference signal. 

In the more recent years, the group investigated tooth imaging as another major biomedical application for 

𝑇𝐶𝑃𝐶𝑇. This application is more advanced than detecting mineral loss because the tooth canals are much 

smaller in scale than bone cavities. A series of papers have built up the argument [4]–[8], and an example 

𝑇𝐶𝑃𝐶𝑇 slice on tooth is shown in Figure 2.2. 

 

Figure 2.2.    Sample Result of 𝑻𝑪𝑷𝑪𝑻 in Tooth Imaging [5] 

Another major application of 𝑇𝐶𝑃𝐶𝑇 that the team has investigated is discovering defects in marquetry. 

Papers such as [7], [9], [10] have looked into this topic, and Figure 2.3 presents a sample slice of result from 

one of these papers. 

 

Figure 2.3.    Sample Result of 𝑻𝑪𝑷𝑪𝑻 on Marquetry Imaging [7] 

The review paper by Tavakolian et al. [12] is also worthy of highlighting, In this work, a concise review on 

𝑇𝐶𝑃𝐶𝑇 and several other critical photothermal imaging techniques is offered. The other techniques include 

lock-in thermography, pulsed phase thermography, thermal wave radar, binary phase coding thermal 

coherence tomography, and chirped pulse photothermal radar. 

Lastly, besides assessing the performance of 𝑇𝐶𝑃𝐶𝑇 in various application scenarios, several other attempts 

have been made over the years to improve the image quality of 𝑇𝐶𝑃𝐶𝑇 by incorporating additional signal 

processing steps. For instance, Zhang et al. [13] proposed an add-on modality that employed median and 
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Gaussian filters, polynomial regression, lower-order derivative processing, and empirical orthogonal 

functions to enhance 𝑇𝐶𝑃𝐶𝑇 images. Tavakolian et al. [14] utilized a spatial-gradient-gate adaptive filter to 

restore features in these thermophotonic images. In another study, Risheh et al. [15] employed several 

computer vision techniques, including 𝐾-mean clustering and Canny edge detection, to enhance the 

boundaries of imaged defects. 
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3. Experimental Setup: 

➢ 3.1 Measurement Setup: 

Figure 3.1 displays a schematic of the experimental setup for 𝑇𝐶𝑃𝐶𝑇.  

 

Figure 3.1.    Experimental Setup Schematic for 𝑻𝑪𝑷𝑪𝑻 [7] 

The testing process starts with the experimenter designing the waveform used to control the laser, which is 

done by entering the required signal parameters into a self-developed computer program created for laser 

control. The computer then transmits the signal parameters to a function generator (Keysight 33500B, Santa 

Rosa, CA) to form the waveform. After the waveform is created, it is sent to the laser driver (PCO-6131, 

Directed Energy, Fort Collins, CO) for activation. Depending on the activation waveform, the 808-𝑛𝑚 pulsed 

diode laser (Jenoptic JOLD-120-QPXF-2P) is either turned on or off. Meanwhile, the actual activation voltage 

used by the laser driver is sampled by another self-developed high-speed data acquisition module and stored 

in the computer as the excitation signal. When activated, the laser emits powerful infrared radiation that 

passes through an optical fiber and finally reaches the sample surface, resulting in heat deposition and the 

initiation of surface temperature increase and decrease. The infrared camera (A6700sc, FLIR, Wilsonville, 

OR) captures this temperature change and transmits it back to the computer for storage. Therefore, at the end 

of the experiment, the experimenter will have two data files: one from the laser driver representing the 

excitation signal, and the other from the camera software representing the thermal response. 

➢ 3.2 Optical Devices: 

It should be also noted that this lab setup incorporates several optical devices that are of great importance. 

One is the collimator (F220SMA-B, Thorlabs, Inc., Newton, NJ) that is attached at the end of the optical fiber to 

reduce the spread and divergence of the laser beam. Laser diodes have shorter optical cavities and therefore 

produce less collimated beams compared to gas and crystal lasers, making a laser collimator necessary for 

optimal performance in the 𝑇𝐶𝑃𝐶𝑇 experimental setup. In Figure 3.2, a schematic drawing of a laser 

collimator is illustrated, which consists of three main components: a casing, a molded aspheric lens, and a 

plug adapter. The lens is responsible for redirecting the laser beam to achieve improved collimation, while 

the plug adapter facilitates connection to an optical fiber [16], [17].  
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Figure 3.2.    Laser Collimator Schematic [16] 

Another device utilized in the experiment is a diffuser (circle pattern ED1-C20, Thorlabs, Inc., Newton, NJ), 

placed closer to the sample surface. The diffuser's purpose is to scatter the beam, spreading it out to cover a 

larger area of the tested surface and to distribute the laser intensity more evenly. However, as the laser 

power remains constant, scattering is expected to decrease the level of laser intensity per unit area 

significantly. For instance, experiments show that when the laser emits a short pulse of 100 𝑚𝑠, the maximum 

temperature rise on the sample surface is roughly 70 ℃ and 4 ℃ for cases with and without diffusers, 

respectively.  

Lastly, in addition to the two optical components altering the laser trajectory, the camera lens is another 

piece of instrument that significantly influences the experiment's outcome. Similar to using microscopes, 

changing the lens with varying focal lengths alters the magnification of the camera and its field of vision.  
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4. Chirp Signals and Chirp Pulse Trains: 

The 𝑇𝐶𝑃𝐶𝑇 technique employs chirp pulse trains to stimulate the sample. As such, this section will outline the 

definition and construction process for both chirp signals and chirp pulse trains. 

➢ 4.1 Chirp Signals: 

Chirp signals refer to signals whose frequencies vary over time. These signals can be categorized as up-chirps, 

which have increasing frequencies, or down-chirps, which have decreasing frequencies. Frequency 

modulation can be applied to either the instantaneous linear or angular frequency of the signal, as both 

frequencies are always related to each other by a factor of 2𝜋. Although there are various types of chirp 

signals (e.g., linear, exponential, hyperbolic), linear chirp signals are the most commonly used. This is because 

that they have a simple and fundamental structure, with a linear increase or decrease in frequency over time 

[18]. Figures 4.1a and 4.1b demonstrate the waveform of such signals. 

    (a) 

    (b) 

Figure 4.1.    Linear Sinusoidal (a) Up-Chirp and (b) Down-Chirp Signals [19] 

Mathematically, linearly modulated chirp signals, which have modulated linear frequencies, can be 

represented by the following equations: 

𝑓(𝑡) = 𝑓1 + 𝑐𝑡 

𝑐 =
𝑓2 − 𝑓1

𝑇
 

As for those signals that have modulated angular frequencies, the corresponding equations are: 

𝜔(𝑡) = 𝜔1 + 𝑘𝑡 

𝑘 =
𝜔2 − 𝜔1

𝑇
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In these equations, 𝑓1 and 𝑓2 are the starting and ending frequencies of the chirp signal, 𝜔1 and 𝜔2 are the 

starting and ending angular frequencies, 𝑇 is the chirp period, 𝑐 is the linear frequency chirp rate, and 𝑘 is the 

angular frequency chirp rate. It is worth noting that 𝑐 and 𝑘 are also sometimes referred to as the linear and 

angular sweep rates of the chirp signal, respectively [18]. 

➢ 4.2 Excitation / In-Phase Chirp Pulse Train: 

In order to create a chirp pulse train, it is crucial to first determine the phase of the corresponding chirp 

signal. This can be achieved by integrating the angular frequency function 𝜔(𝑡) over time: 

∆𝜙(𝑡) = ∫ 𝜔(𝜏)𝑑𝜏
𝑡

0

 

∆𝜙(𝑡) = ∫ (𝜔1 + 𝑘𝜏)𝑑𝜏
𝑡

0

 

∆𝜙(𝑡) = (𝜔1𝜏 + 𝑘𝜏2)0
𝑡  

∆𝜙(𝑡) = 𝜔1𝑡 +
1

2
𝑘𝑡2 

𝜙(𝑡) − 𝜙1 = 𝜔1𝑡 +
1

2
𝑘𝑡2 

𝜙(𝑡) = 𝜙1 + 𝜔1𝑡 +
1

2
𝑘𝑡2 

Here, 𝜙1 is the starting phase of the chirp signal. Note that since the expression for 𝜙(𝑡) has a second-order 

relationship with respect to time, linearly modulated chirp signals are also sometimes referred to in literature 

as quadratic-phase signals. 

Once the expression for 𝜙(𝑡) of the linearly modulated chirp signal is obtained, a pulsed chirp can be 

synthesized by generating a pulse each time the phase reaches a certain magnitude over 2𝜋. For the 

excitation data of 𝑇𝐶𝑃𝐶𝑇, this magnitude is set to be 𝜋/2. Mathematically, the positions of the pulses are 

solutions to the following equation: 

𝜙(𝑡) = 𝜔1𝑡 +
1

2
𝑘𝑡2 = 2𝑚𝜋 +

𝜋

2
 

where 𝑚 is an integer starting from 0. In other words, if a pulse train of 𝑝𝑑  pulses is needed, then the locations 

of the pulses on the time scale are given by: 

𝜙(𝑡𝑝,0°,𝑚) = 𝜔1𝑡𝑝,0°,𝑚 +
1

2
𝑘𝑡𝑝,0°,𝑚

2 = 2𝑚𝜋 +
𝜋

2
    (𝑚 = 0, 1, 2, … , (𝑝𝑑 − 1)) 

In this context, the subscript 𝑝 denotes pulses, 0° refers to in-phase data, and 𝑚 represents the index of pulses 

within the entire pulse train (beginning from 0). It is worth noting that this excitation pulse train is also 
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known as the in-phase pulse train since there is no time delay between the pulses and the thermal excitation 

peaks, meaning that they are always synchronized with each other. 

Then, to obtain a direct representation of 𝑡𝑝,0°,𝑚, solving the equation above quadratically to yield: 

1

2
𝑘𝑡𝑝,0°,𝑚

2 + 𝜔1𝑡𝑝,0°,𝑚 − (2𝑚𝜋 +
𝜋

2
) = 0    (𝑚 = 0, 1, 2, … , (𝑝𝑑 − 1)) 

𝑡𝑝,𝑚 =
−𝜔1 ± √𝜔1

2 − 4 ∗
1
2

𝑘 ∗ (− (2𝑚𝜋 +
𝜋
2

))

2 ∗
1
2

𝑘
    (𝑚 = 0, 1, 2, … , (𝑝𝑑 − 1)) 

𝑡𝑝,0°,𝑚 =
−𝜔1 + √𝜔1

2 + (4𝑚𝑘𝜋 + 𝑘𝜋)

𝑘
    (𝑚 = 0, 1, 2, … , (𝑝𝑑 − 1)) 

𝑡𝑝,0°,𝑚 =
−𝜔1 + √𝜔1

2 + 𝑘𝜋(4𝑚 + 1)

𝑘
    (𝑚 = 0, 1, 2, … , (𝑝𝑑 − 1)) 

Finally, using the expression of 𝑡𝑝,0°,𝑚, the chirp pulse train that controls the laser to excite the sample can be 

written as follows: 

𝑃(𝑡) = 𝑃0°(𝑡) = ∑ 𝛿(𝑡 − 𝑡𝑝,0°,𝑚)

𝑝𝑑−1

𝑚=0

 

where: 

𝑡𝑝,0°,𝑚 =
−𝜔1 + √𝜔1

2 + 𝑘𝜋(4𝑚 + 1)

𝑘
    (𝑚 = 0, 1, 2, … , (𝑝𝑑 − 1)) 

𝑘 =
𝜔2 − 𝜔1

𝑇
 

➢ 4.3 Quadrature Chirp Pulse Train: 

In the field of thermography, particularly in the lock-in thermography process, a second set of signals known 

as the quadrature signal is utilized in conjunction with the in-phase signal. The quadrature signal is delayed 

by 1/4 of a cycle in comparison to the in-phase signal, and together, they are used to generate the amplitude 

and phase outcomes. This same approach is also employed in 𝑇𝐶𝑃𝐶𝑇. To introduce a 90° delay, the 

quadrature pulse train's pulses are identified when the chirp signal's phase is 180° instead of 90°. As a result, 

the analytical results for the locations of the pulses in this additional pulse train are: 

𝜙(𝑡𝑝,90°,𝑚) = 𝜔1𝑡𝑝,90°,𝑚 +
1

2
𝑘𝑡𝑝,90°,𝑚

2 = 2𝑚𝜋 + 𝜋    (𝑚 = 0, 1, 2, … , (𝑝𝑑 − 1)) 

1

2
𝑘𝑡𝑝,90°,𝑚

2 + 𝜔1𝑡𝑝,90°,𝑚 − (2𝑚𝜋 + 𝜋) = 0    (𝑚 = 0, 1, 2, … , (𝑝𝑑 − 1)) 
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𝑡𝑝,90°,𝑚 =
−𝜔1 ± √𝜔1

2 − 4 ∗
1
2

𝑘 ∗ (−(2𝑚𝜋 + 𝜋))

2 ∗
1
2

𝑘
    (𝑚 = 0, 1, 2, … , (𝑝𝑑 − 1)) 

𝑡𝑝,90°,𝑚 =
−𝜔1 + √𝜔1

2 + (4𝑚𝑘𝜋 + 2𝑘𝜋)

𝑘
    (𝑚 = 0, 1, 2, … , (𝑝𝑑 − 1)) 

𝑡𝑝,90°,𝑚 =
−𝜔1 + √𝜔1

2 + 𝑘𝜋(4𝑚 + 2)

𝑘
    (𝑚 = 0, 1, 2, … , (𝑝𝑑 − 1)) 

Similar to the in-phase calculations, the quadrature pulse train can be expressed as follows: 

𝑃90°(𝑡) = ∑ 𝛿(𝑡 − 𝑡𝑝,90°,𝑚)

𝑝𝑑−1

𝑚=0

 

where: 

𝑡𝑝,90°,𝑚 =
−𝜔1 + √𝜔1

2 + 𝑘𝜋(4𝑚 + 2)

𝑘
    (𝑚 = 0, 1, 2, … , (𝑝𝑑 − 1)) 

➢ 4.4 Some Remarks: 

To conclude this section, it is first worth emphasizing that the excitation / in-phase chirp pulse train is 

already present after the measurement, given that it is utilized to stimulate the inspected sample. On the 

other hand, the quadrature pulse train is introduced solely during the post-processing phase to aid in the 

generation of amplitude and phase slices of heat wave propagation.  

Another characteristic of chirp pulse trains that is worth noting is that the interval between adjacent pulses 

for an up-chirp pulse train always decreases. This property is related to the phase equation discussed earlier: 

𝜙(𝑡) = 𝜔1𝑡 +
1

2
𝑘𝑡2 = 2𝑚𝜋 +

𝜋

2
 

For an up-chirp pulse train, where 𝜔2 > 𝜔1, the chirp rate 𝑘 > 0. Therefore, the phase expression 𝜙(𝑡) is a 

concave upward quadratic function. Then, since the coefficients in front of 𝑡2 and 𝑡 are both positive, the axis 

of symmetry of this parabola is in the negative half-plane for 𝑥. Additionally, this expression always passes 

through the point (𝑡 = 0, 𝜙(𝑡) = 0). Thus, the graph of 𝜙(𝑡) versus 𝑡 for an up-chirp pulse train appears as 

shown in Figure 4.2. In the positive half-plane for 𝑥, 𝜙(𝑡) rises at an increasing rate, while the vertical axis 

values that the function is trying to intercept, (2𝑚𝜋 + 𝜋/2), has a constant rate of change. Consequently, the 𝑥 

values associated with larger 𝜙(𝑥) values will be more closely spaced, meaning that later pulses in an up-

chirp pulse train are closer together. 
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Figure 4.2.    Solution Distribution of the Phase Equation for an Up-Chirp Pulse Train 

An inverse conclusion can be given for down-chirp pulse trains. As shown in Figure 4.3, the time interval 

between consecutive pulses becomes larger. However, this case has some additional restrictions coming from 

the fact that the phase first increases at then decreases when 𝑡 > 0. This indicates that only between 𝜙(𝑥) =

0 and 𝜙(𝑥) = peak value of the phase curve will there be solutions of 𝑥. Hence, when studying 𝑇𝐶𝑃𝐶𝑇, to 

avoid the problems of encountering no appropriate pulse locations, only up-chirp pulse trains are used. In 

addition, up-chirp pulse trains have the advantage that the earlier pulses are given more time to cool down, 

so their effects on the subsequent pulses are smaller than down-chirp pulse trains. 

 

Figure 4.3.    Solutions of the Phase Equation for a Down-Chirp Pulse Train  
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5. Post-Processing Algorithm: 

In this section, the 𝑇𝐶𝑃𝐶𝑇 post-processing algorithm will be introduced in detail. Besides, the improvements 

on this process implemented by the author of this thesis will be highlighted. Overall, the primary objective of 

this algorithm is to use the recorded data of laser excitation and thermal response and the additional 

operations of truncation and slicing to produce amplitude and phase slices that reflect the depth-localized 

heat progression inside the tested specimen. 

Before delving into the algorithm itself, it is crucial to clarify that the term 𝑇𝐶𝑃𝐶𝑇 is actually a misnomer in 

most literature. There are, in fact two distinct versions of the algorithm known as 𝑇𝐶𝑃𝐶𝑇. The 𝑇𝐶𝑃𝐶𝑇 

algorithm as presented by Welch et al. [7] is the sole one that applies truncation followed by cross-correlation 

to the signals. On the other hand, in other publications, whether labeled as 𝑇𝐶𝑃𝐶𝑇 or 𝑒𝑇𝐶𝑃𝐶𝑇, the algorithm 

actually performs cross-correlation first and then slices the results to generate the final images. Despite this 

distinction, both methods have been proven to possess the ability to provide depth-localized defect 

characterization. However, it is noteworthy that the second method is more commonly studied than the first, 

owing to the considerably higher number of calculations involved in the first method, resulting in longer 

processing times, as elucidated in subsequent sections. 

To avoid confusion between the two versions of the 𝑇𝐶𝑃𝐶𝑇 algorithm, this thesis will henceforth refer to the 

version that uses first cross-correlation and then slicing as 𝑒𝑇𝐶𝑃𝐶𝑇, which has been extensively studied. The 

version that applies first truncation and then cross-correlation to obtain the desired results, which is 

currently still being developed, will be referred to as 𝑇𝐶𝑃𝐶𝑇. 

A flowchart of the entire post-processing algorithm that applies to both 𝑒𝑇𝐶𝑃𝐶𝑇 and 𝑇𝐶𝑃𝐶𝑇 is presented in 

Figure 5.1 on the next page. Both post-processing processes can be summarized into 8 steps, with the only 

difference between the two methods occurring in Step 7. 
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Figure 5.1.    Post-Processing Flowchart for Applicable to Both 𝒆𝑻𝑪𝑷𝑪𝑻 and 𝑻𝑪𝑷𝑪𝑻 
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➢ 5.1 Process the Thermal Response Data: 

(1) Import: 

To initiate the post-processing procedure, the thermal camera recording frames are read sequentially by the 

computer to construct a 3𝐷 matrix that comprises the complete thermal response data. Each frame 

represents the temperature distribution of the examined surface at a specific time point. This 3𝐷 matrix can 

be denoted as 𝑇𝑜𝑟𝑖(𝑥, 𝑦, 𝑓#), where 𝑇𝑜𝑟𝑖  indicates that it is an original, unprocessed temperature signal, (𝑥, 𝑦) 

specifies that the signal value is dependent on the corresponding pixel location, and 𝑓# indicates that the 

signal value varies with each frame captured. The dimensions of the resulting thermal response matrix can 

then be calculated by multiplying the full frame height, full frame width, and the total number of frames. In 

equation form: 

[Size of Thermal Response Data] = [Full Frame Height] ∗ [Full Frame Width] ∗ [Total Frame Number] 

Figure 5.2 depicts an example frame from a thermal camera recording, and Figure 5.3 illustrates an example 

thermal data for a specific pixel point across all recorded frames in a sample dataset.  

In the remainder of this paper, a colon (:) will be used to indicate the case in which an entire independent 

dimension of a signal is selected. Therefore, using this notation, a thermal camera frame can be written as 

𝑇𝑜𝑟𝑖(: , : , 𝑓#), and a specific pixel's thermal response can be written as 𝑇𝑜𝑟𝑖(𝑥, 𝑦, : ). 

 

Figure 5.2.    Original Surface Temperature Profile from a Sample Dataset at a Specific Time Stamp                             

(i.e., an Example of 𝑻𝒐𝒓𝒊(: , : , 𝒇#)) 
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Figure 5.3.    Original Surface Temperature Profile from a Sample Dataset at a Specific Pixel Point                                      

(i.e., an Example of 𝑻𝒐𝒓𝒊(𝒙, 𝒚, : )) 

(2) Detrend: 

Although the laser pulses that excite the inspected sample occur sequentially in time, in both 𝑒𝑇𝐶𝑃𝐶𝑇 and 

𝑇𝐶𝑃𝐶𝑇, they are treated as independent events. To avoid the impact of thermal drifting caused by the 

repetitive heating of the sample surface, detrending the thermal response data is essential. Failure to do so 

result in different pulses being on different magnitudes due to the leftover heat accumulation from earlier 

pulses. The detrended temperature signal of that presented in Figure 5.3 is shown in Figure 5.4. Following the 

notations for the original thermal response, the detrended thermal response is denoted as 𝑇𝑑𝑒𝑡(𝑥, 𝑦, 𝑓#). 

Readers of the report may raise questions about the necessity of multiple excitation pulses when they are 

treated as unrelated. To address this, let us revisit the discussions on chirp pulse trains mentioned in Section 

4.3. It is important to recall that we need to generate a quadrature pulse train, which lags by 90° compared to 

the excitation / in-phase chirp pulse train. As explained in Section 4.4, up-chirp pulse trains exhibit pulses 

that gradually cluster together. Consequently, when creating the quadrature pulse train, different quadrature 

pulses are shifted by varying amounts of time relative to their corresponding in-phase pulses. This results in a 

new pulse train that is not a simple time shift of the entire in-phase pulse train. Therefore, the presence of 

multiple excitation pulses, determined by the starting frequency, ending frequency, and duration of the chirp 

signals, remains a crucial aspect of this algorithm. 
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Figure 5.4.    Detrended Surface Temperature Profile at a Specific Pixel Point                                                                  

(i.e., an Example of 𝑻𝒅𝒆𝒕(𝒙, 𝒚, : )) (Produced Using the Same Dataset as the Prior Figures) 

➢ 5.2 Process the Laser Excitation Data: 

(1) Import: 

After loading the thermal response data, the laser excitation data is also imported. The excitation data 

contains some noise since as mentioned in Section 3, it is a resampling of the exact excitation amplitude used 

by the laser driver to activate the laser. Figure 5.5 shows an example sequence of the laser excitation data 

from the same dataset as Figure 5.3. 

 

Figure 5.5.    Original Laser Excitation Data                                                                                                                                          

(Produced Using the Same Dataset as the Prior Figures) 
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(2) Correct: 

Some corrections is then applied on the excitation data imported above. The desired output is a 0/1 binary 

array with 0 and 1 mapping to the 𝑂𝑁 and 𝑂𝐹𝐹 entries of the laser, respectively. To achieve this, a threshold 

is applied to the original excitation data, and the trigger pulse that does not activate the laser, found at the 

beginning of the data, is removed. Figure 5.6 displays a sample result obtained after processing the data from 

Figure 5.5. 

 

Figure 5.6.    Thresholded Laser Excitation Data                                                                                                         

(Produced Using the Same Dataset as the Prior Figures) 

Given that the duration of the pulses and the frame rate of the camera are known inputs for the experiment, a 

quick sanity check to verify the validity of the data and its processing is to sum up the entire excitation data 

array and compare it to the expected number of 𝑂𝑁 entries for all pulses. The expected number can be 

calculated as the product of the pulse number, frame rate, and pulse duration, represented as: 

[Total Number of 𝑂𝑁 Entries for All Pulses] = [Pulse Number] ∗ [Frame Rate] ∗ [Pulse Duration] 

(3) Resize: 

It should be further noted that the length of the excitation data may not always match the number of frames 

in the recording due to dropped frames in the thermal camera recording or some other reasons. To address 

this issue, a resizing function was developed to adjust the length of the excitation data to match the number of 

frames precisely. The resizing function uses the number of camera frames as a reference and modifies the 

length of the excitation data accordingly. If the reference data is longer than the number of frames, then the 

function truncates the last few entries of the data. If the reference data is shorter than the number of frames, 

then a few zero entries is added to the excitation data’s end. 
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➢ 5.3 Sync the Thermal Response and Laser Excitation Data: 

The 𝑇𝐶𝑃𝐶𝑇 algorithm relies on precise synchronization between the thermal response and laser excitation 

signals. Only when these two signals are perfectly aligned can the dataset be meaningfully processed further. 

After processing the laser excitation signal as shown in the previous step, it is straightforward to correspond 

its elements to the laser activation status: a value of 1 indicates that the laser is 𝑂𝑁, while a value of 0 

indicates that the laser is 𝑂𝐹𝐹. However, identifying the pulses in the thermal response signal is a challenging 

task. There is a significant level of noise present in the measured thermal data (refer back to Figures 5.3 and 

5.4), and the shape of the measured thermal decay varies across different experiments during to distinct 

pulse inputs. The only clear characteristic that can help in identifying the pulses is that the thermal response 

signal peaks at the end of each pulse, when the heat deposition on the sample surface is completed. 

Therefore, to overcome these challenges, the thesis writer improved upon the previous algorithm and 

devised a robust peak identification method using Python's SciPy module with customized arguments 

tailored to the shape of the thermal decay signals. Specifically, three key additions were made to enhance the 

peak identification process: 

1. In order to reduce the impact of noise, the averaged temperature signal across slices, instead of 

the thermal response signal at any particular pixel, was used as the representative thermal 

response data for signal alignment. 

2. An argument for peak prominence was added to the implementation of SciPy’s "find_peak" 

command to obtain a short but reliable initial list of peak candidates, which speeds up the 

subsequent refined search of peaks. 

3. A while loop was constructed to gradually increase the required peak width for the most 

prominent peak candidates.  

After implementing these three improvements, the code was tested on all available datasets, and no incorrect 

data syncing was observed. This suggests that the peak search argument is both robust and effective. 

Additionally, to visually demonstrate the effectiveness of the updates, Figures 5.7 and 5.8 presented some 

sample results from before and after the data alignment process. These figures further confirmed the validity 

of the updated peak identification method. 
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Figure 5.7.    Temperature Response and Laser Excitation Signals Before Sync                                                                        

(Produced Using the Same Dataset as the Prior Figures) 

 

Figure 5.8.    Temperature Response and Laser Excitation Signals After Sync                                                                        

(Produced Using the Same Dataset as the Prior Figures) 
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The thesis author would like to emphasize the rationale behind using peak prominence as the first criterion 

for identifying peak candidates. Peak prominence is a measure of how distinct a peak is in terms of its 

intrinsic height and relative location among other peaks. Figure 5.9 presents a schematic of a series of peaks, 

with their prominence illustrated as the height of the colored region below each peak. For instance, the 

prominence of peak 6 is calculated as the height difference between points 6 and d, while the prominence of 

peak 8 is the height difference between points 8 and f [20].  

The determination of peak prominence involves a 4-step process [20]: 

1. Extend a horizontal line from the peak towards the left and right directions until it encounters a 

higher peak or reaches the boundaries of the graph. 

2. Identify the minimum value of the signal within each interval formed by the peak and the endpoints 

obtained from Step 1. 

3. Select the higher of the two interval minima as the reference level. 

4. Calculate the peak prominence as the difference in height between the larger minimum from Step 3 

and the peak itself. 

Essentially, peak prominence identifies the importance of a peak relative to its adjacent environment where it 

stands out the most. Referring back to Figure 5.9, peak 4 exhibits the highest prominence among the group of 

peaks 3 and 4. However, beyond these two peaks, in a larger vicinity, there are other peaks, such as peaks 2 

and 6, that surpass peak 4 in height. Hence, peak 4 only dominates within the range of peaks 3 and 4, and the 

reference level chosen for measuring its prominence is the base level of the curve for these two peaks. 

In our present case of peak search on thermal response data, peak prominence can be demonstrated to have 

great importance, as seen in Figure 5.10. The differences in peak prominences between a genuine peak 

resulting from thermal excitation (e.g., peak 𝐴1) and a spurious peak caused by noise during thermal decay 

(e.g., peak 𝐴2) are clearly evident. For peak 𝐴1, a horizontal line passing through it intersects the graph again 

at points 𝐵1 and 𝐶1, where 𝐵1 is the result of reaching the graph boundary, and 𝐶1 is due to reaching the 

thermal rise induced by another pulse. Then, the larger minimum found in the two intervals (𝐵1, 𝐴1) and 

(𝐴1, 𝐶1) is located at 𝐷1. Therefore, the height between 𝐴1 and 𝐷1 represents the peak prominence for 𝐴1. On 

the other hand, for peak 𝐴2, the same process is followed, but the horizontal line extended to the left abruptly 

stops at 𝐵2 due to the higher peak of 𝐴1 located in close proximity. As a result, the selected minimum 

corresponding to 𝐵2 is just 𝐷2, the small valley to its left. This significantly decreases the prominence of 𝐴2, 

leading to the conclusion that peak prominence is a reliable parameter for identifying genuine peaks 

corresponding to thermal pulse excitations. 

As further evidence to support this argument, Figure 5.11 displays a series of peak search results obtained 

using different referencing parameters, including peak distance, prominence, width, and threshold. Clearly, 

the results obtained by searching based on peak prominence are the most appropriate and reliable, 

reinforcing the significance of peak prominence as a robust parameter for peak identifications. 
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Figure 5.9.    A Sample Peak Series and Their Prominences [20] 

 

Figure 5.10.    Peak Prominence Search Applied on Thermal Response Data 

 

Figure 5.11.    Differences Peak Search Results Using Distance, Prominence, Width, and Threshold                          

as the Selection Parameter [21] 
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➢ 5.4 Generate the In-Phase Reference Data: 

After obtaining a properly aligned pair of thermal response and laser excitation data, the next step is to 

generate an in-phase reference data. The in-phase reference data consists of a pulse train with pulses located 

at the same positions as those in the laser excitation data. However, the width of the pulses is adjusted to 

match the slice width used in the subsequent truncation or slicing steps for slice production.  

➢ 5.5 Generate the Quadrature Reference Data: 

In Section 4, it was previously explained that quadrature signals are signals that lag by 90° compared to the 

in-phase signals. This phase difference is taken into account when using the phase equation to determine the 

location of pulses in chirp pulse trains. Section 4 also provided an analytical method for generating 

quadrature chirp pulse trains. However, for the sake of computational efficiency, a slight modification has 

been made in the actual calculations. Specifically, the quadrature pulses are lagged by exactly 1/4 of the 

distance between the current pulse and the next pulse. Then, similar to the construction of the in-phase 

reference signal, the width of the 𝑂𝑁 portion of the data is determined based on the width of the slices used 

in the subsequent steps of the process.  

➢ 5.6 Calculate the Number of Available Slices: 

➢ 5.7 Calculate the Amplitude and Phase Slices: 

(1) Introduce: 

These two steps of the algorithm are presented together since understanding the process for calculating 

amplitude and phase slices (Step 7) is crucial in determining the appropriate time range for making these 

slices (Step 6). It is also important to note that Step 7 marks a significant departure point between the 

𝑒𝑇𝐶𝑃𝐶𝑇 and 𝑇𝐶𝑃𝐶𝑇 algorithms. Therefore, in this section, the method for calculating the amplitude and 

phase slices in 𝑒𝑇𝐶𝑃𝐶𝑇 is explained first, followed by that used in 𝑇𝐶𝑃𝐶𝑇. Then, the similarities in their 

calculations are identified, leading to the conclusion that both algorithms have the same time range for 

producing the desired slices. 

In 𝑒𝑇𝐶𝑃𝐶𝑇, the amplitude and phase slices are obtained through a sequence of steps that involve cross-

correlation and slicing. A flowchart illustrating the entire process is provided as Figure 5.14. The detailed 

steps are as follows: 

1. (Cross-Correlation) The in-phase and quadrature reference signals are cross-correlated with the 

entire thermal response data to produce the in-phase and quadrature cross-correlation results. 

2. These two results are combined based on corresponding terms to yield the amplitude and phase 

sequences. 

3. (Slicing) Starting from the zero cross-correlation delay time, the positive axis of the delay time is 

traversed, and the amplitude and phase results are sliced at every multiple of the slice width. 

4. This process generates a sequence of 𝑒𝑇𝐶𝑃𝐶𝑇 amplitude and phase slices. 
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Figure 5.14.    𝒆𝑻𝑪𝑷𝑪𝑻 Slice Calculation Procedure 
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The processing steps for 𝑇𝐶𝑃𝐶𝑇 are slightly different, with the first being truncation and then followed by 

cross-correlation. A flowchart showing the entire process is presented as Figure 5.15. The details of the 

process are also listed as follows: 

1. (Truncation) The in-phase reference signal is first delayed by a certain time (several multiples of the 

slice width) and then multiplied with the thermal response signal to truncate a portion of the thermal 

decay for specific focus. The selected section of the thermal signal has a length equal to the pulse 

width of the in-phase reference data, which is also equal to the slice width. 

2. (Cross-correlation) The truncated part of the thermal signal is then cross-correlated with both the in-

phase and quadrature reference signals to generate two sequences of cross-correlation results. 

Notably, due to the sparse nature of both the truncated thermal signal and the reference signal 

(either in-phase or quadrature), these cross-correlation outcomes are also sparse. 

3. To avoid one value dominating the other, only entries whose in-phase and quadrature cross-

correlation values are both nonzero are considered when combining these two sequences into 

amplitude and phase results. Other entries are set to zero. 

4. The maxima across the entire amplitude and phase sequences are then found to form the images, 

resulting in a pair of amplitude and phase slices. 

5. To generate a stack of amplitude and phase images, the delay time applied on the in-phase reference 

signal in Step 1 of the process is changed to different multiples of the slice width. This truncates 

different parts of the thermal decay, yielding a series of thermal slices that are used to form the stack 

of amplitude and phase images. 
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Figure 5.15.    𝑻𝑪𝑷𝑪𝑻 Slice Calculation Procedure 
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(2) Compare: 

A comparison between the two algorithms reveals that the 𝑒𝑇𝐶𝑃𝐶𝑇 algorithm, for all its slices, only requires 

one cross-correlation per pixel to generate results. On the other hand, the 𝑇𝐶𝑃𝐶𝑇 algorithm involves different 

truncations of the thermal signal, and each truncation is associated with one cross-correlation between the 

delayed reference signal and the truncated thermal signal. As a result, the computational workload of 𝑇𝐶𝑃𝐶𝑇 

is significantly heavier than 𝑒𝑇𝐶𝑃𝐶𝑇.  

During the initial stages of this thesis project, the lab had already developed software capable of calculating 

amplitude and phase slices using both methods. However, the computational speed of 𝑇𝐶𝑃𝐶𝑇 was found to be 

too slow, taking over 12 hours to process 120 slices. This substantial time requirement poses a significant 

disadvantage in terms of further development of 𝑇𝐶𝑃𝐶𝑇. Fortunately, in the next section, the author of this 

thesis will introduce some successful efforts to speed up the process and bring it within a reasonable 

timeframe. 

Another important consideration is the valid time range for both algorithms to produce meaningful slices. In 

both cases, a key principle is to ensure that time shifts or cross-correlations do not go beyond the range of the 

currently inspected pulse. If this occurs, it can result in a mixing of results from multiple pulses or a 

reappearance of strong signals in later slices, leading to confusion in interpretation. As discussed previously, 

for up-chirp pulse trains, the later pulses tend to cluster more closely in time. This means that the narrowest 

pulse in such a pulse train is the second-to-last pulse, not the last pulse, as there is no pulse after it that would 

affect its results. Furthermore, since the quadrature signal is delayed relative to the in-phase signal, it is the 

second-to-last pulse of the quadrature signal that is closest to overlapping with the next pulse during time 

shifting. Hence, the available time range to produce slices is between the second-to-last quadrature pulse and 

the last in-phase pulse, as the last in-phase pulse coincides with the start of the response data of the last 

pulse. The number of available slices is then calculated as the result of dividing this window by the width of 

the slices, which can be expressed mathematically as: 

[Number of Available Slices] =
[Length of Valid Slice Window]

[Slice Width]
 

It should be further specified that for 𝑒𝑇𝐶𝑃𝐶𝑇, it is the cross-correlation between the entire thermal data and 

the quadrature reference data that would lead to such overlap. As for 𝑇𝐶𝑃𝐶𝑇, it is the time delay of the 

quadrature reference data during truncation that would lead to this issue. 

(3) Improve: 

Two significant improvements have been implemented in this step. 

Firstly, it has been observed that cross-correlation calculations, when performed using the central processing 

unit (𝐶𝑃𝑈) of computers, take considerably more time compared to other computation steps. Additionally, in 

the 𝑇𝐶𝑃𝐶𝑇 algorithm, cross-correlation is performed multiple times for each pixel, resulting in significant 
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computational overhead if the entire calculation is carried out in a single, simple for loop. To address this, 

Fourier transforms have been applied by past literature to the thermal response and reference data, allowing 

for faster cross-correlation calculations in the frequency domain as a simple multiplication [1]. Despite these 

optimizations, the processing time still remains lengthy, taking 12 hours to execute for a single set of 

parameters, as mentioned earlier. Therefore, further changes need to be made to reduce the processing time 

and improve efficiency. 

To address this issue, the thesis writer enhanced the algorithm by leveraging the computational power of 

graphical processing units (𝐺𝑃𝑈s) in computers to perform highly efficient parallel computing. This 

implementation is also with the assistance of PyTorch, a commonly used Python module for training neural 

networks [22]. Although PyTorch lacks a built-in function for direct cross-correlation calculations, it provides 

a similar operation known as convolution [23]. The relationship between the two operations is that the 

convolution of two signals, 𝑥1(𝑡) and 𝑥2(𝑡), is equivalent to the cross-correlation of the signals 𝑥1(𝑡) and 

𝑥2(−𝑡). Thus, "conv1d", the command for one-dimensional convolution in PyTorch, can be used to implement 

cross-correlations. However, it is important to note that the laser excitation and thermal response data must 

be reshaped before being passed into the "conv1d" command to ensure successful execution. 

The "conv1d" command performs the following transformation: 

[Batch Size] ∗ [Number of Input Channels] ∗ [Length of the Signal Sequence]

→ [Batch Size] ∗ [Number of Output Channels] ∗ [Length of the Output Sequence]  

Specifically, the batch size indicates how many cross-correlations of the same kind are happening 

simultaneously, while the number of input channels indicates how many different kinds of cross-correlations 

are being performed. The third dimension represents the direction along which the cross-correlation occurs. 

In the case of 𝑇𝐶𝑃𝐶𝑇, where the same reference signal is cross-correlated with each thermal signal from all 

pixels, there is only one type of cross-correlation, and the number of input channels should be 1. Meanwhile, 

the batch size should be set to the total number of pixels in the entire frame. This requires reshaping the 

thermal response data from: 

[Full Frame Width] ∗ [Full Frame Height] ∗ [Total Frame Number] 

into: 

([Full Frame Width] ∗ [Full Frame Height]) ∗ 1 ∗ [Total Frame Number] 

After the cross-correlation, the dimension of the output is: 

([Full Frame Width] ∗ [Full Frame Height]) ∗ 1 ∗ [Length of Cross Correlation Results] 

Then, another reshaping step is necessary to convert the entire cross-correlation matrix back to its expected 

form, which is: 

[Full Frame Width] ∗ [Full Frame Height] ∗ 1 ∗ [Length of Cross Correlation Results] 
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Following the introduction of this improvement, performance statistics were gathered to demonstrate its 

significance. With the update successfully implemented, the time required per slice of calculation reduced to 

only 45 seconds, showcasing a substantial decrease in the time needed to produce 120 slices of results from 

12 hours down to 1 hour and 30 minutes. This represents a remarkable speed increase of 8 times, 

highlighting the significant efficiency gain achieved through the implementation of the proposed 

improvement. 

Furthermore, Google Colab, an online coding platform from Google, currently offers resources of advanced 

𝐺𝑃𝑈 graphics cards [24]. Although there is a cost associated with such usage, it supports simultaneous 

processing of several datasets through running multiple Python interfaces. The price for this service is $1.5 

𝐶𝐴𝐷 per hour per Python session [25]. 

Recently, a new research hypothesis has emerged in the context of 𝑇𝐶𝑃𝐶𝑇, suggesting that the peaks in the 

higher harmonics of the amplitude and phase results, i.e., the shorter peaks, may also contain important 

characteristics of the inspected defects. To enable further investigation in this direction, the thesis writer has 

also developed a function that facilitates the retrieval of results from non-highest peaks when utilizing 𝐺𝑃𝑈 

for computations. This function has been confirmed to be compatible with 𝐺𝑃𝑈 usage and does not 

significantly impact efficiency. 

The approach to implementing this identification method involves creating a binary mask with 0/1 values 

across the entire amplitude / phase result matrix, where the entries corresponding to the highest peaks for 

each pixel are set to zero. By multiplying this mask with the result matrix, the highest peaks can be removed. 

Subsequently, a second round of highest peak identification can be applied based on the result matrix after 

the peak removal, allowing for further analysis of the deeper peaks and their potential significance in 

characterizing the inspected defects. 

➢ 5.8 Save the Amplitude and Phase Slices to Disk: 

Finally, once the calculations of the amplitude and phase slices are complete, the results are saved as NumPy 

files and colormap images on the computer disk for future reference. As an additional contribution, the thesis 

writer implemented an image saving function that allows the slices to be saved with one number per pixel. 

This enables the slices to be easily imported into Paint software on a Windows computer system, where the 

pixel index can be identified, and graphs of amplitude or phase changes can be drawn against the slices to 

identify any abnormalities in the data. This feature provides a convenient way to visually analyze the 

amplitude and phase changes in the slices and identify any interesting features or anomalies. 
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6. Experimental Results: 

This section presents the experimental results of 𝑒𝑇𝐶𝑃𝐶𝑇 on crack imaging, which comprises two stages. In 

the first stage (Section 6.1), the effects of varying experimental parameters on the 𝑇𝐶𝑃𝐶𝑇 outputs are 

examined. Then, in the second stage (Section 6.2), an additional software called ImageJ is utilized to generate 

a comprehensive 3𝐷 imaging of the crack. It is important to note that the 𝑇𝐶𝑃𝐶𝑇 results will be addressed in 

future work, as the accuracy of the improvements mentioned in the previous section is still under review. 

➢ 6.1 Parameter Variation Testing: 

𝑒𝑇𝐶𝑃𝐶𝑇 measurements involve the adjustment of multiple parameters, such as pulse width, slice width, pulse 

number, pulse spacing, and camera frame rate. Notably, pulse spacing is determined by three additional 

parameters: starting chirp frequency, ending chirp frequency, and chirp duration. In the forthcoming 

discussions, these parameters will be systematically varied to assess their impact on the resulting amplitude 

and phase slices. It is anticipated that while there may be variations in image quality, modifying these 

parameters will not significantly affect the results, as all data processing is based on the same crack. 

It is important to also highlight that the discussions will primarily focus on two types of analysis for 

comparing the results. The first analysis entails determining the slice number at which traces of the crack are 

no longer clearly visible on the phase images obtained from the calculations. Results from amplitude slices 

are not reported, as they are highly sensitive to varying emissivity and uneven heating, which can cause 

surface features to persist in these images longer than in phase images. This can lead to confusion when 

characterizing the subsurface feature of the crack. Figures 6.1 and 6.2 provide an example of such a 

comparison, where it is evident that the phase results exhibit a smoother trend across the slices compared to 

the amplitude results. 

Meanwhile, the second analysis entails monitoring changes in the trajectory of the amplitude or phase values 

at a specific point on the sample surface while varying input parameters. Consistency in the results would be 

expected, with the trajectories following a similar trend.  
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Figure 6.1.    Sample Sequence of Amplitude Slices 

 

Figure 6.2.    Sample Sequence of Phase Slices 
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The results from each type of parameter testing are provided in the following pages. To enhance the 

presentation in this report, comments and highlights from each test are compiled into a list as follows: 

1. The phase channel consistently shows crack disappearance occurring between slices 22 and 29. 

Discrepancies may be attributed to imaging noise and human error in visually approximating the 

disappearance of the crack from the slices. 

2. Varying pulse width significantly affects amplitude slices, with larger pulse widths resulting in higher 

magnitudes due to increased energy deposition on the surface. Phase discrepancies are 

comparatively smaller, but it can be observed that larger pulse widths also lead to smaller phase 

changes. 

3. Varying slice width has a noticeable impact on amplitude results as it affects the pulse width of the 

reference signals used in the cross-correlations. Smaller slice widths can also help to smooth out 

phase variations, indicating that decreasing slice width can improve the axial resolution of the 

results. 

4. Varying pulse number shows that considering more pulses decreases the phase increase over all the 

slices, which may be disadvantageous as a wider range of amplitude and phase results would lead to 

higher sensitivity in detection. 

5. No apparent trends or effects are observed from the results of varying pulse spacing. 

6. Lastly, varying camera frame rates shows that higher frame rates result in less variation in the data. 

This decrease in variation is not the same as in the case of pulse number, where decreased sensitivity 

would occur. Instead, it is helping to reduce noise in the signal. Therefore, higher frame rates should 

be used. It can be observed from the figures that the phase variation due to noise for cases of 100 𝐻𝑧, 

200 𝐻𝑧, and 400 𝐻𝑧 are approximately 40°, 20°, and 10°, respectively. Hence, this confirms the well-

known signal processing conclusion that increasing sampling rate improves the signal-to-noise ratio 

of the output. 
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(1) Varying pulse width: 

Table 6.1.    Slice Indices or Delay Time for Crack Disappearance from the Phase Images 

Cases Results 

(1) Varying Pulse Width 

Pulse Width = 100 𝑚𝑠 Slice Index = 24 

Pulse Width = 50 𝑚𝑠 Slice Index = 25 

Pulse Width = 25 𝑚𝑠 Slice Index = 27 

Pulse Width = 10 𝑚𝑠 Slice Index = 22 

 

   

   

Figure 6.3.    Variations of Amplitude and Phase Results                                                                                                              

for Cracked and Intact Pixels Under Different Pulse Widths 
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(2) Varying slice width: 

Table 6.1.    Slice Indices or Delay Time for Crack Disappearance from the Phase Images 

(2) Varying Slice Width 

Cases Results 

Slice Width = 100 𝑚𝑠 Delay Time = 200 𝑚𝑠 

Slice Width = 50 𝑚𝑠 Delay Time = 200 𝑚𝑠  

Slice Width = 20 𝑚𝑠 Delay Time = 240 𝑚𝑠  

Slice Width = 10 𝑚𝑠 Delay Time =  240 𝑚𝑠 

 

  

  

Figure 6.4.    Variations of Amplitude and Phase Results                                                                                                              

for Cracked and Intact Pixels Under Different Slice Widths 
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(3) Varying pulse number: 

Table 6.1.    Slice Indices or Delay Time for Crack Disappearance from the Phase Images 

(3) Varying Pulse Number 

Cases Results 

Pulse Number = 9 Slice Index = 29 

Pulse Number = 5 Slice Index = 28 

Pulse Number = 2 Slice Index = 23 

 

  

  

Figure 6.5.    Variations of Amplitude and Phase Results                                                                                                              

for Cracked and Intact Pixels Under Different Pulse Numbers 
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(4) Varying pulse spacing: 

Table 6.14    Slice Indices or Delay Time for Crack Disappearance from the Phase Images 

(4) Varying Pulse Spacing (All First 5 Pulses Selected) 

Cases Results 

Excitation Chirp = 0.2~0.6 𝐻𝑧, 14 𝑠, 6 pulses Slice Index = 26 

Excitation Chirp = 0.2~0.6 𝐻𝑧, 24 𝑠, 10 pulses  Slice Index = 21 

Excitation Chirp = 0.2~1.2 𝐻𝑧, 14 𝑠, 10 pulses Slice Index = 27 

Excitation Chirp = 1~1.2 𝐻𝑧, 16 pulses Slice Index = 28 

 

  

  

Figure 6.6.    Variations of Amplitude and Phase Results                                                                                                              

for Cracked and Intact Pixels Under Different Pulse Spacings 

 



38 
 

(5) Varying camera frame rate: 

Table 6.5.    Slice Indices or Delay Time for Crack Disappearance from the Phase Images 

(5) Varying Camera Frame Rate 

Cases Results 

Camera Frame Rate = 100 𝐻𝑧 Slice Index = 28 

Camera Frame Rate = 200 𝐻𝑧  Slice Index = 26 

Camera Frame Rate = 400 𝐻𝑧 Slice Index = 28 

 

  

  

Figure 6.7.    Variations of Amplitude and Phase Results                                                                                                              

for Cracked and Intact Pixels Under Different Frame Rates 
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➢ 6.2 𝟑𝑫 Crack Imaging: 

This last section of the report presents the ongoing work on 3𝐷 crack imaging. Although this step has not 

been applied to all datasets yet, some promising results have already emerged, as evidenced by the figures 

below. It is important to note that an image software called ImageJ has been utilized to enable such 

visualizations. This software enables zooming in on a specific section of the calculated slices, as depicted in 

Figure 6.8, and displaying only the cross section of that particular section. An example stack displayed in 

ImageJ's 3𝐷 visualizer is shown in Figure 6.9. It is evident from the figure that the crack extends 1/4 into the 

thickness of the entire stack, affirming that the 𝑇𝐶𝑃𝐶𝑇 algorithm indeed possesses 3𝐷 crack profiling 

capabilities. 

 

Figure 6.8.    Screenshot Demonstrating ImageJ’s Stack Slicing Ability 

 

Figure 6.9.    Sample 𝟑𝑫 Crack Visualization Results 
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7. Summary: 

To conclude the thesis, this work provides a comprehensive review and introduces significant advancements 

to the 𝑇𝐶𝑃𝐶𝑇 algorithm. The methodology's history, setup, and algorithm are thoroughly examined for review 

purposes. Additionally, novel improvements to the algorithm's execution are proposed, along with its 

application to crack imaging, a previously unexplored topic. The following list highlights the latest 

advancements in 𝑇𝐶𝑃𝐶𝑇 presented in this work: 

1. A more robust peak search method is introduced for analyzing pulse thermography data. This 

method utilizes peak prominence and peak width to accelerate the process and to enhance 

identification accuracy. 

2. A more efficient cross-correlation computation method is developed using Python's PyTorch module, 

enabling parallel computation through convolution commands. This improvement results in an 8-

fold increase in computation speed. 

3. Controlled experiments are conducted to evaluate the sensitivity of 𝑇𝐶𝑃𝐶𝑇 to different input 

parameter variations. 

4. 3𝐷 visualization of cracks is achieved by passing amplitude and phase stacks into the ImageJ 

software. This allows for obtaining cross-sectional views of cracks in the depth direction, enabling 

identification of crack depth and other details. 

Overall, this thesis contributes to the advancement of 𝑇𝐶𝑃𝐶𝑇 by proposing innovative methods for peak 

search, computation, sensitivity analysis, and crack visualization, enhancing the algorithm's performance and 

expanding its application to crack imaging.   
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