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Abstract

Dielectric elastomer actuators are constructed from an elastomer or other compliant material 
sandwiched between two electrodes, with high potential for applications as artificial muscles in soft 
robotics. However, the current use of artificial muscles (in particular, DEAs) in research and industry is 
limited by the difficulty in assessing the properties and quality of large batches of muscle samples, as 
well as the slow rate at which full tests of artificial muscle samples can take place and be processed
(upwards of 2-3 hours for DEAs per sample when considering processing). This report aims to present 
a design for an integrated framework for characterizing the performance of DEAs, in order to reduce 
the time and cost of DEA testing and enable the wider application of DEAs. Requirements were 
developed from the necessary technical specifications of the new framework, and were used to guide 
the design process in selection of systems and solutions. The integrated framework underwent several 
design iterations and improvements to decrease test run time and improve its accuracy when operating 
under different environmental conditions and with different types of DEA samples, resulting in a final 
integrated framework consisting of the physical design, the hardware design, and the software design. 
Testing of this framework against the existing framework demonstrated greatly improved runtime for 
testing, data collection, and data processing, most significantly due to the CV strain measurement 
system that reduced the time required for strain measurement by a factor of 20. Testing of the 
framework across different types of DEA samples demonstrated that the system is compatible with 
different configurations of DEAs and different environmental lighting, indicating the robustness of the 
system. The results of this report demonstrate that the integrated testing framework is feasible for use 
for wide-scale testing of DEA samples, and can be used to widen the availability of DEA performance 
data for use in better control of DEA samples. Future work should be done to collect a dataset of DEA 
performance with the system, to investigate the feasibility of ML-based models of DEA performance 
prediction and control that are trained using the DEA dataset, and to extend the testing framework to 
other classes of artificial muscles.
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1. Introduction

1.1 Background

Artificial muscles are a class of robotic actuators
that have significant advantages compared to
conventional rigid robotic actuators, including
human-safe actuation forces, lower mass, lower
material and manufacturing cost, and a greater
degree of mobility and extensibility [1]. One class
of artificial muscles that have demonstrated
particularly high potential for use in soft robotic
applications are Dielectric Elastomer Actuators,
or DEAs [2]. DEAs comprise a diverse and highly
controllable class of artificial muscle, being
constructed from an elastomer or other compliant
material sandwiched between two electrodes,
offering significant cost savings compared to
other soft robotic actuators due to the low cost of
material. DEAs are effectively soft capacitors,
composed of an elastomeric dielectric layer
placed between two compliant electrodes. When a
voltage is applied to the electrodes, the charge
buildup on the opposite electrodes causes the
electrodes to attract and compress the elastomeric
dielectric layer, causing the entire DEA to expand
in the planar direction, developing strains of up to
30-40% in certain compositions of DEAs [2].
Conventional single-film DEAs develop force
outputs in the mN range and similarly small
displacements, whereas novel multi-layer
composite DEAs made with ultrathin carbon
nanotube (CNT)-based percolative electrodes can
develop forces of upwards of 10 N [2]. The
extension and contraction cycle of a DEA is
repeatable for several thousand cycles (depending
on the DEA composition, applied voltage, and
applied force) and can be leveraged by rolling a
DEA sheet in a cylinder to create an artificial
muscle strand that behaves similarly to human
muscle fiber [2]. Consequently, the development
of DEAs offers significant opportunities for
applications in lightweight and affordable human

prosthetics and in high-performance biomimetic
robotics.

However, the current use of artificial muscles (in
particular, DEAs) in research and industry is
limited by the low predictability of the response
and limits of soft robotic actuators made from
different materials as well as individual artificial
muscle samples, presenting significant challenges
in controlling and verifying the quality of
individual actuators in large-scale applications of
DEAs. Higher-accuracy and faster testing would
significantly accelerate the rate at which
individual and batch DEA samples can be tested,
allowing for the collection of a representative
dataset of DEA performance and behavior. As
such, this report presents a novel and integrated
framework for the large-scale characterization of
artificial muscle properties, with the aim of
significantly improving the speed and accuracy of
DEA testing and building datasets for ML-based
prediction of DEA performance.

The focus of this report is on developing a
framework to characterize the performance of
specifically DEAs, as they offer significant
potential for a feasible artificial muscle compared
to other soft robotic actuators, with the system
presented being optimized to DEA testing in the
form-factor of the hardware used, as well as the
design of the image processing software.
However, the presented mechanical, hardware,
and software framework is highly adaptable to
other artificial muscles testing setups, and can
easily be extended to offer diverse testing
capability to soft robotics labs.

Fig. 1: Diagram of DEA behavior under applied voltage
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1.2 State of the Art

Current research in the field of artificial muscles
and DEAs focuses primarily on the development
and testing of small samples of actuators made via
novel materials or methods, with little focus given
to testing of larger-scale individual samples, large
batches of artificial muscles, or investigating the
feasibility of scale manufacturing methods for
artificial muscles. Similarly, there is little research
on scalable testing frameworks for artificial
muscles, leaving a significant gap in translating
the success of artificial muscles in individual
literature to integrated robotic or prosthetic
applications, which this report will seek to
address though its presented integrated testing
framework.

The few testing frameworks that exist are highly
specialized to particular classes of artificial
muscles, require significant in-lab work to
operate, are poorly scalable, and do not have
software integration for high-volume data
collection and processing, significantly reducing
their utility in accelerating the characterization of
artificial muscles. J. Chipka et al. present a
dynamometer-based testing system for testing of
McKibben (pneumatic) artificial muscles, which
captures the kinematic performance and energy
usage of the actuator, but whose application is
limited to high-force, low-frequency devices and
cannot capture strain data, and thus being poorly
adaptable to characterization of DEAs [3].
Similarly, J. Garbulinski et al. present a
framework and model for testing extensile fluidic
artificial muscles (EFAMs), using a pressure
transducer and load cell connected to an Arduino
board for collection of force data, which is
converted into stress and strain data via use of a
script, with the results being used to validate a
previously-developed mathematical model to
predict the stress-strain behavior of EFAMs [4].
This framework, while significantly more scalable

than the framework presented by J. Chipka, is
specialized to testing only EFAMs, limiting its
use in informing the design of DEA testing
frameworks [4]. T. Henderson et al. present a
data-driven approach for selection of artificial
muscles for use in robotic and prosthetic
applications based on the performance constraints
of stress and bandwidth of different classes of
artificial muscles - however, the presented
literature is relevant to the broad selection of
artificial muscle classes for specified application
rather than the prediction of the performance of
any particular class of artificial muscle, and does
not present any new approaches for collecting
artificial muscle data, instead relying upon
scattered data points from existing literature on
artificial muscles to form the dataset used to train
the selecting model [5]. The low number of data
points and wide variability in the source and
consistency of the data significantly reduces the
utility of the dataset in developing predictable
models for DEAs (or any other artificial muscle),
further obviating the need for a scalable
framework for testing DEAs.

1.3 Motivation

The gap in sufficiently robust datasets of artificial
muscle performance and testing frameworks to
enable the compilation of such datasets, as well as
the high potential for DEA use in soft robotics
applications if challenges of sample performance
predictability and quality are resolved, indicates a
strong need for the development of an integrated
and scalable DEA testing system.

To characterize the behavior of a DEA sample,
the sample’s resistance, capacitance, and strain
response to an applied voltage has to be measured
from zero applied voltage to near (or beyond) the
breaking point of the sample (characterized by the
electrical or mechanical breakdown of the
dielectric elastomer, shorting the electrodes and
causing the DEA to rupture and contract). It is
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essential to maintain consistent testing conditions
between trials to obtain an accurate
characterization of sample behavior, which
increases the time required between sample tests
to ensure that testing conditions are maintained
within acceptable limits. The rapid and accurate
measurement of DEA strain presents an additional
challenge, as traditional methods for strain
measurement such as strain gauges would
interfere with the results of the test, while manual
measurement of strain by area is inaccurate and
infeasible for a large number of data points.
Advances in rapid manufacturing potentially
allow for the design of modular, scalable, and
dimensionally accurate structures that allow
sample tests to be run in consistent conditions,
while CV techniques allow for DEA strain to be
measured automatically and accurately. An
integrated system utilizing these features would
have greater testing capacity, consistency, and
speed, and would additionally enable more
feasible large-scale testing of DEA samples. Such
a system would additionally enable the
development of machine learning models to
predict the behavior of different classes of DEAs
based on material properties, physical
dimensions, manufacturing method, and defects,
with LSTM and transformer-based systems being
the most likely candidates for effective models in
this context. As such, the development of a
system that can accelerate the testing of artificial
muscles and is able to robustly predict the
behavior of batches of DEA samples would
greatly increase the feasibility of large-scale DEA
characterization and quality assessment, and
allow the use of DEAs in a wider range of
robotics and industrial applications.

1.4 Objectives and Methodology

This project will contribute a design for a novel
artificial muscle testing platform and software
package for use in research and industrial

contexts, and will demonstrate the platform’s
performance in characterizing the behavior of
diverse DEA samples in single-sample and
parallel tests compared to conventional testing
platforms. The project will additionally discuss
the feasibility of extending the framework to
predicting the behavior of different classes of
artificial muscles, and will discuss the next steps
of developing and training a sample machine
learning system on data collected from the testing
framework to effectively predict the behavior of a
sample batch of DEAs.

This report is divided into five sections: An
introduction to the research problem, High-level
design of the testing framework, Hardware and
software development of the framework, Testing
and discussion of results, and Investigation of
future work. The design section discusses the
engineering approach to the design of the
framework, including:

1. Identification of major requirements and
potential hardware and software
approaches

2. Integration of hardware and software
systems

3. Presentation of conceptual design and
justification of design decisions

The development section discusses the realization
of the integrated system, including:

1. The development of iterations of the
mechanical and hardware system,
including challenges faced and solutions

2. The development of the software and
computer vision (CV) system, including
challenges faced and solutions

3. Prototyping and integration of completed
framework

The testing section discusses the results of testing
the system on sample data and actual DEAs,
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including an investigation of overall testing time
of a DEA sample with and without the system, as
well as the scalability of the design.

The future work section discusses the application
and extension of the work presented in this report,
including:

1. Application of the system to compile
dataset on DEA performance

2. Extension of system to other artificial
muscle classes

3. Discussion of feasibility of ML model to
predict performance of DEAs

2. Design of Testing Framework

2.1 Requirements of Proposed Testing
Framework

The engineering requirements of the DEA testing
framework were collected via benchmarking of
the performance of the existing DEA testing
setup, identification of necessary parameters to
measure during testing of DEAs, and scoping of
specifications for acceptable time and accuracy
performance of the testing framework to enable
large-scale and accurate data collection and
processing of DEA tests.

The existing setup consists of a plastic disc
containing a single DEA sample, connected via
leads to a variable-voltage power supply and a
BK Precision 894 high-resolution LCR meter.
The voltage output of the power supply is
manually controlled by the lab technician, and can
be varied from 0 V to 4 kV. The LCR meter
records the applied voltage with a precision of
0.005V and the resistance, capacitance, and
inductance (LCR) with a precision of 0.05%, and
passes the data via USB to a computer running
LabView 2022, where the data points are logged
every 0.001 seconds and parsed into a .csv file
when data collection is complete.

The existing setup uses a Spinel OV9281 720p
USB camera mounted on a cardboard frame to
capture video of the DEA during the test run, with
the built-in webcam software of the connected
computer being used to record footage of the
DEA sample, the recording being manually
initiated by the lab technician.

The procedure for a test of a DEA sample with
the existing setup is as follows:

1. Place DEA sample in disc, connect leads
to electrodes

2. Turn on power supply and LCR meter, set
desired voltage ramp and data collection
parameters

3. Manually turn on computer with LabView,
open file with voltage and LCR collection,
ensure LCR meter is passing data to
computer

4. Place USB camera over DEA sample and
turn on webcam recording software

5. Start voltage ramp and data collection on
LabView, note time and start recording of
video of DEA on computer

6. When DEA ruptures, identified by visual
inspection of the DEA or increase in the
measured LCR, turn off power supply and
LCR meter and stop LabView recording,
note time

7. Stop video recording and note time
8. Perform manual strain measurements of

DEA at selected time intervals by drawing
circles, measuring area, converting to area
in mm2, and converting to strain

The essential parameters required for
characterization of the performance of a DEA
sample (and required resolution) are as follows:

1. Voltage (V)
2. Resistance (Ω)
3. Capacitance (F)
4. Strain (mm2/mm2)
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5. Time (s)

Voltage is the input parameter of the DEA, and is
used to control the response of the DEA, all other
parameters being dependent on the supplied
voltage. The LCR of the DEA varies over the
testing cycle, and varies by the material
composition of a DEA sample - characterizing the
voltage-resistance curve of a DEA is essential to
finely controlling the strain of the DEA without
causing dielectric breakdown or rupture.
Capacitance is additionally used to detect the
rupture point of a DEA sample, with capacitance
significantly decreasing when the DEA ruptures,
as the electrodes contact each other and create a
short, reducing the ability of the DEA to retain
charge, thereby significantly reducing the system
capacitance. The strain characterizes the extent to
which the DEA sample expands over the course
of the test, with the voltage-strain curve being
required to control the extension and contraction
of the DEA in a robotic or prosthetic application.
The time of the results is used to synchronize the
data points, and is thus required to be captured
precisely to ensure the voltage-resistance and
voltage-strain curves of DEA samples can be
linked and used to characterize the LCR and
strain performance of a DEA sample.

Collection of the above parameters across a single
given DEA sample represent a single data point in
a prospective DEA performance dataset, multiple
tests of the same DEA composition and other
DEA compositions, totalling upwards of
thousands or tens of thousands of individual tests
being required to form a useful corpus of data that
can be used for training control and prediction
models [6].

The weaknesses of the existing setup are clear
upon review of the test procedure and required
parameters for development of a useful DEA
dataset:

1. High cycle times with processing,
upwards of 40 minutes, including manual
strain measurement and data
synchronization

2. Setup only allows testing of single DEA
sample at a time - collection of large
number of data points infeasible
considering high cycle times

3. Significant extent manual setup, parameter
control, and data collection and analysis -
time-consuming and poorly optimized

4. Manual control of camera positioning,
data synchronization, strain measurement
creates significant risk of experimental
and user error

5. Poor environmental control (open-air test,
camera angle/positioning, lighting) creates
risk of experimental variation and error

The DEA testing setup, as it exists in its current
form, does not offer acceptable cycle times and
data consistency for feasible development of a
useful DEA performance dataset. A successful
testing framework should be able to collect data
on the required parameters with minimal
turnaround, minimal manual input from the lab
technician, and would minimize experimental
variation between trials, and would resolve the
weaknesses of the existing setup. As such, the
requirements of the proposed DEA testing
framework are as follows:

1. Measure voltage (V) to precision of 0.005
V

2. Measure resistance (Ω) to precision of
0.05%

3. Measure capacitance (F) to precision of
0.05%

4. Automatically measure strain (mm2/mm2)
to precision of 10%

5. Record data at frequency of 1000 Hz or
better
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6. Synchronize all data points to same clock
cycle

7. Start and stop test and data collection with
single operator input

8. Operate within single application
container, output all data to .csv and video
file

9. Maintain consistent voltage input, DEA
sample loading, camera positioning,
lighting across trials

10. Reduce testing cycle time to 20 minutes or
better

11. Enable testing of multiple samples in
parallel with expanded testing framework

The requirements listed above were used to guide
the design and development of the DEA testing
framework, and were used to assess the
performance of the final prototype in Section 4.

Fig. 2: Image of contoured DEA sample in DEA sample
ring, with electrodes connected to leads

Fig. 3: Image of BK Precision 894 high-resolution LCR
meter, as used in the existing testing setup (below)

2.2 Hardware and Software Approaches to
Achieving System Requirements

Requirements 1 and 2 were already achievable
with the LCR meter and LabView components of
the existing setup, but Requirements 3-10
presented significant engineering challenges in
integrating appropriate hardware and software
systems to achieve the required testing framework
performance.
Requirement 3 was most significant to the
successful performance of the DEA testing
framework, and most challenging to achieve, as it
required the development of a system capable of
automatically and accurately measuring the strain
of the DEA sample at a frequency of 1000 Hz
from camera footage of the sample. This presents
a classical image recognition problem, with the
aim of consistently detecting and measuring a
circular object with low contrast from noisy
footage.
Comparable image recognition applications in
literature have used computer vision (CV) or deep
learning to automatically detect and measure
shapes, with G. Li et al. using simple computer
vision to enable measurement of strain of samples
in tensile testing setups, while Z. Zhao et al.
provide a review of the successful application of
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deep learning models in diverse object detection
and measurement tasks [7, 8]. Deep learning
models for image recognition have been standard
since the late 2010s and are highly adaptable to
noisy and variable images, offering object
identification accuracy of upwards of 98% and
similarly high strain measurement accuracy if
optimized and tuned to the input images, while
also being capable of running detection and
measurement operations in fractions of a second
with relatively low computer hardware
requirements [8]. However, a deep learning image
detection solution (and all machine learning
approaches) would be inappropriate for use in the
DEA testing framework as it requires significant
volumes of training data in the form of footage of
the DEA sample during testing (either labelled or
unlabeled, depending on the type of deep learning
model selected) to train the model to detect the
DEA and measure strain accurately, defeating the
purpose of the development of the DEA testing
framework. As such, a CV image detection
system was selected for strain measurement, as it
requires no training data to operate.

Fig. 4: Comparison of operation of deep learning model and
CV system for strain measurement of DEA samples from
video of DEA samples

CV image detection systems operate by inputting
image data and manipulating pixel values by
means of image transformations to remove
irrelevant features and detect desired features,
whether these be edges, shapes, or complex
images such as human faces or license plates,

however CV image detection systems are most
well-optimized for detection of simple shapes
such as circles.

CV systems are “dumb” in the sense that they
apply the same image filtration and simple
detection algorithms (in effect, simple matrix
transformations of pixel values and simple
probabilistic algorithms for shape detection) to all
input images to detect shapes, however, with
appropriate tuning and effective input image
control, CV systems have comparable or better
performance to deep learning systems, without
requiring training data or substantial computer
hardware for training the model.

In a shape detection and area calculation
application such as the DEA testing framework, a
CV system will apply sequential image
transformations to crop irrelevant portions of the
image, apply contrast transformations to highlight
the edges of a shape, apply a pixel value threshold
to remove all pixels not part of the edge, and then
applying backfilling of the enclosed edge
perimeter or simple probabilistic circle detection
algorithms to calculate the area. Given consistent
positioning of the camera and control of the
testing environment across trials, a CV system
can accurately measure strain to a precision of
10%, achieving Requirement 3.
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Fig. 5: CV system pipeline for strain calculation

Edge-based detection and backfill measurement
of shape area, as described by G. Li et al. and B.
Li et al., presents the simplest approach to strain
measurement, with the detected edge contour
being backfilled with white pixels and the number
of white pixels being counted and converted to an
area in mm2, the pixel2 to mm2 conversion factor
being known beforehand from the measurement
in pixels of a ruler in the image frame and the
consistent placement of the camera throughout
different trials [8, 9]. However, while edge-based
backfilling and area calculation is tolerant of
non-circular shapes and is the quickest CV strain
measurement technique (calculating strain in less
than 0.2 seconds per frame, depending on the
processing hardware available), it is inaccurate if
a complete edge contour cannot be detected
before backfilling and area measurement, which,
with noisy and low-contrast input images as
presented by the USB camera used in the testing
setup, leads to unacceptable variation in strain
measurement.

Fig. 6: Image of edge detection of DEA sample (Canny
algorithm)

An alternative to edge-based detection and
backfill measurement of shape area is Hough
Circle Transform detection of circular shapes and
calculation of circular area, as described by H.K.
Yuen et al. [10]. HCT divides an input image into
a grid and moves a circle of varying size across
the grid, multiplying the pixel value of the circle
with the image pixel value and updating an
internal accumulator matrix (convolution). Given
parameters of maximum and minimum circle size,
number of expected circles within the image, and
grid size, the HCT algorithm outputs the location
and radius of detected circles on the image, with
the area being calculated directly from the radius
of the detected circle. The resultant location and
radius of the detected circles is precise if the input
HCT parameters are correctly tuned to the input
image, with the algorithm being tolerant to
incomplete edges and partially-circular shapes.
HCT does result in relatively high processing
times (upwards of 1 second per frame) if poorly
optimized, therefore it is important to control the
input parameters of the HCT to minimize
processing time and maximize accuracy of
detected circle radius. Given the circular shape of
the DEA sample and the difficulty of obtaining
complete edge contours from the noisy input
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images, HCT was selected as the CV approach for
strain measurement, as it presented accurate and
robust strain detection with acceptable image
processing times.

For the purposes of simplicity and integration
with other software subsystems, the CV strain
measurement system was coded in Python. The
iteration of the CV strain measurement system is
discussed in detail in Section 3.2.

Fig. 7: Illustration of operation of HCT - (A) Hough
accumulator space for a circle (x,y,r) for unknown radius r.
The scanning circles are on the cone surface. (B) 5 points on
a circle (100,100,50). (C) Circles in the Hough accumulator
space corresponding to each of the input points in (B). (D)
20 points on a circle (100,100,50). (E) Circles in the Hough
accumulator space plotted, matching the input points in (D).
The intersecting peak represents the center of the circle
being detected by the HCT algorithm. [12]

Fig. 8: Example of HCT-based detection of a circular shape
in an image of a DEA sample, which can be used to
calculate the area and strain of the DEA sample

Requirements 5-7 relate to streamlining the
experiment control and data management at the
software level, by connecting all data inputs
(voltage, LCR, strain, time) within a single table,
synchronizing the voltage and LCR data
collection with the strain data collection, while
also enabling the operator to control the
experiment, collect and review data, and output
tabular and graphical results within a single
application framework. This requires the use of an
software framework that can be integrated with all
data sources (Python CV strain measurement data
and LabView voltage and LCR data), with the
ability to accurately measure runtime globally, as
well as the ability to create user interfaces for
displaying and manipulating data, and the ability
to write .csv and video files. Python was selected
as the software framework to build the application
for managing all data processing and user
interfaces, as Python is easily integrated with
LabView, has a global clock function, enables
streamlined processing and recording of data, and
can be used to create user interfaces, while also
being capable of performing operations
sufficiently quickly to meet data frequency
requirements.

The same camera as in the existing framework
(Spinel OV9281 720p USB camera) was selected
as it provides sufficiently high-resolution video,
and auto-adjusts focus, allowing its focus to be
maintained across trials and ensuring that clear
footage is captured in all testing contexts.

Requirements 8 and 10 relate to the consistent
physical setup and scalability of the testing
framework, requiring the design of a mechanical
testing framework to house the camera, DEA
sample, electronic components, and lighting
system, while also ensuring consistent setup
configuration between trials and minimizing
environmental effects (undesired lighting, dust)
on the experiment.

12



The overall physical setup was designed as a
three-tier system, consisting of the camera frame,
the DEA sample housing, and the electronic
system housing. The camera frame mounts the
camera with bolts to a rigid frame that does not
move relative to the DEA sample between trials,
ensuring consistency between experiments,
consistent image capture, and accurate strain
measurement results from the CV system. The
DEA sample housing consists of a box with a
circular ring for housing the DEA sample,
including sliding doors to enable replacement of
the DEA sample between trials, and with the
lighting system attached around the perimeter of
the top of the inner edge of the box. Holes at the
bottom of the DEA sample housing enable the
leads to be connected from the electronic system
to the DEA electrodes. The electronic system
housing consists of a simple box without a roof to
house the electronic system, consisting of a
simple circuit to enable fine voltage ramping
during DEA sample tests. The camera frame bolts
to the DEA sample housing, while the DEA
sample housing connects to the electronic system
housing via the use of integrated pins. The cubic
shape and small form-factor of the design was
selected to enable multiple setups to be used on a
single lab bench, enabling parallel operation of
DEA sample tests. Optimization of the physical
design and material selection are discussed in
Section 3.1.

The lighting system is intended to provide
consistent lighting for the DEA sample across
different trials, while also minimizing glare on the
DEA sample and maximizing the contrast
between the DEA and the DEA housing. A
review of CV lighting by D. Martin indicates that
white LEDs offer the best brightness, power
efficiency, and form factor for the DEA testing
framework, while also being the most
cost-effective option of all the lighting
alternatives [11]. Glare presents a major challenge
to the functionality of the CV system, as it creates
reflective artifacts in the image of the DEA that
the CV system is not tuned to filter out - as such,
the accuracy of the CV system is significantly
impacted by the presence of glare, indicating that
controlling glare is an important component of
lighting design for the DEA testing framework.
The diffuseness of light strongly controls the
extent of glare developed on incident surfaces,
especially reflective surfaces such as the surface
of the DEA sample, with more diffuse light
causing less glare. As LEDs are particularly prone
to developing harsh point light, LEDs with
diffusers were selected for use in the DEA sample
housing, to reduce the glare created on the DEA
sample and increase the accuracy of the CV strain
measurement system. The light color temperature
was selected as white (4000 K) to offer the
greatest contrast across a range of DEA samples
with unmarked, red-marked, and blue-marked
borders (DEA sample marking discussed in more
detail in Section 3.2). A flat diffuse lighting
configuration was selected to further minimize the
effect of glare on the DEA sample and to
maximize the contrast of the DEA edge against
the DEA sample housing.
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Fig. 9: Comparison of properties of different CV lighting
sources [11]

Fig. 10: Diagram of diffuse lighting configurations for a CV
setup: Dome Diffuse (Left), On-Axis Diffuse (Center), Flat
Diffuse (Right) [11]

The electronic system was fully designed by Ang
Li, a lab collaborator, and was used to isolate the
LCR meter from the high voltage signal supplied
to the DEA sample from the power supply. Due to
the acceptable performance of the system during
testing, the electronic system design used in the
integrated framework is the same as the electronic
system design used in the existing framework.

2.3 Hardware and Software Integration

The unified DEA testing framework is composed
of the physical system, consisting of the camera
housing, the DEA sample housing, and the
electronic system housing, the hardware system,
consisting of the camera, the voltage isolation
electronics, the power supply, the LCR meter, and
the cables connecting the hardware to the
computer, and the software system, consisting of
the CV strain measurement system, the Python

data collection and synchronization backend, and
the Python-based interface. The block diagram of
the integrated system is shown in Figure 11
below.

Fig. 11: Block diagram of integrated DEA testing
framework

3. Development and Prototyping

3.1 Development and Iteration of Physical
System

The physical system underwent several stages of
design iteration to optimize geometry, material
use, lighting, and scalability, resulting in the
development of an optimized physical system that
enables a consistent DEA testing setup, robust
environmental control, and accurate CV strain
measurement.

All versions of the physical system were
developed in SolidWorks.

The first iteration of the physical system was
designed with a 12 x 12 cm footprint, contained a
single hinged door for DEA sample changes,
included two small holes for running leads
between the electronics housing and the DEA
sample housing, and was designed to be
constructed fully from 3 mm laser cut wood
pieces, with M3 bolts being used to assemble all
components of the design.

Prototyping of the first iteration of the physical
system revealed several design deficiencies that
would be rectified in the next iteration. Most
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significantly, the low reflectivity and surface
pattern of the wood interfered with the accuracy
of the CV system, causing the system to
incorrectly read and measure the area of the DEA
sample. The 12 x 12 cm footprint of the design
was too small for the electronic system and
presented significant challenges in replacing DEA
samples, while the single door could not be
assembled via hinges, forcing the use of a
temporary bolting solution to seal the DEA
sample housing. Additionally, the small holes for
leads presented large ergonomic challenges in
connecting the DEA sample to the electronic
system, while the electronics housing and the
DEA sample housing proved difficult to assemble
and disassemble due to the use of double-sided
M3 studs that could not be easily turned when
placed into the wood, and which left a gap
between the electronic housing and the DEA
sample housing when assembled. Consequently,
the three components of the first physical system
iteration prototype were connected with tape for
ease of assembly and disassembly.

Beyond the listed issues, the prototype of the first
iteration of the physical system indicated that
other dimensions of the system were correctly
defined, with the camera fitting into its frame and
the DEA sample fitting into its housing, and that
the LED system was able to provide adequate
lighting for the CV system to operate consistently
across trials, validating the engineering
methodology and design decisions used in the
design of the physical system.

Fig. 12: CAD and physical model of first iteration of
physical system

The second iteration of the physical system was
designed with a 15 x 15 cm footprint, contained
two sliding door for DEA sample changes,
included two larger holes for running leads
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between the electronics housing and the DEA
sample housing, with a cover being included to
cover the holes during operation of the system to
minimize undesired noise in the CV system. The
DEA sample housing was designed to be 3D
printed from gray PLA for dimensional accuracy
and to better diffuse the light in the housing to
improve the contrast between the DEA sample
and the DEA sample housing, while the single
color and rough surface finish of the gray PLA
was selected to ensure minimal glare and visual
artifacts were captured by the USB camera, in
order to minimize the effect on the CV system’s
accuracy. The camera was designed to be
mounted into the camera frame with M2 bolts,
while the camera frame was designed to be bolted
onto the top of the DEA sample housing via M2
bolts to securely control the position of the
camera relative to the DEA sample across
different trials for consistency and experimental
repeatability. Four 2 x 2 mm square pegs were
added to each corner of the bottom of the DEA
sample housing to enable it to be mounted on top
of the electronics housing, while also allowing for
easy access to the electronics housing in the case
of required maintenance or modifications. A 10
cm ruler is optionally included inside the DEA
sample housing for calibration of the strain
measurement system, being automatically
cropped out of the input image by the CV system
and therefore having no negative effect on the
accuracy of the CV system.

The electronics housing in the second iteration of
the physical system was designed to be 2 cm
taller than in the first iteration of the physical
system to fully accommodate the electronic
system without bending of any component leads,
and was additionally designed to be fully
assembled from laser cut material of 3 mm
thickness to save material cost.

Low-cost and easily-accessible materials and
production processes (laser cutting and 3D
printing) were selected as the manufacturing
method for the physical system to minimize the
cost of replicating the system, enabling greater
scalability of the testing framework.

All other parameters, including dimensions,
materials, and integration with the hardware
components remained unchanged from the first
iteration of the physical system, as these
parameters were validated to function correctly
during testing of the prototype of the first iteration
of the physical system.

Prototyping and testing of the second iteration of
the physical system, as well as integration of the
physical system with the hardware and software
system, are discussed in Section 3.4.

Fig. 13: CAD model of second iteration of physical system

3.2 Development and Iteration of Software
and CV System

The software system underwent several phases of
design iteration to improve its performance, with
the CV system being optimized continuously to
increase accuracy (measured by percent error of
strain measurement vs actual strain), robustness
(number of different DEA sample contours the
system is compatible with and resistance to noise
in the image input), and frame processing time
(measured in seconds per frame). The
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development of the software system saw
optimizations to improve data processing speed
and the synchronization of data streams, as well
as to improve the clarity of the user interface.

The CV system development consisted of three
iterations of the system, each iteration offering
accuracy and runtime optimizations over the
previous iteration, as well as employing better
code management and efficiency improvements to
improve its integration with the other components
of the software system. All iterations of the CV
system were developed in Python using the
OpenCV library for image transformations.

The first iteration of the CV system consisted of
two separate CV systems, each intended to handle
a different DEA contour type. DEA contouring is
a manual pre-processing step where a lab
technician draws a contour around the edge of a
DEA sample in red or blue ink to increase the
contrast of the edge and reduce the computing
runtime required for edge detection - however,
contouring increases the processing time of a
DEA sample test by a few minutes, and therefore
offers an opportunity for runtime optimization if
eliminated. Given that some labs use contouring
as a standard process, however, the CV system is
required to be compatible with both contoured
and non-contoured DEA samples. The systems
were built by stacking successive image
transformations and cropping to highlight the
edge of the DEA and remove undesired inputs
such as glare, the leads, the electrodes, the DEA
sample ring, and noise in the image.

Both CV systems of the first iteration were only
able to operate on sequences of image files
instead of live video, this deficiency being
rectified in future iterations to enable live image
processing.

All testing of CV system accuracy and runtime
was performed on three videos of DEA sample

tests, one with a non-contoured DEA sample and
two with DEA samples contoured in red and blue
ink, respectively.

The order of transformations of the CV system for
non-contoured DEA samples began with cropping
the input image to remove the DEA sample ring
from the image. The input image is fed through a
Canny edge detection filter with thresholds of 16
and 18, which applies a Gaussian blur with a 5 x 5
pixel kernel to denoise the image, and then
applies an edge gradient detection algorithm to
mark detected edges with white pixels, all other
pixels being set to black. While this detected the
edge of the DEA sample, it also detected the
electrodes, the leads, and the glare created by the
light source, which impacted the processing speed
of the CV system and would need to be rectified
in future iterations. The system then applied the
HCT with the following constant parameters:

1. Minimum distance between circle centers:
1000 pixels

2. Accumulator (grid) to image size ratio: 1:1
3. Edge detector threshold: 20 pixels
4. Accumulator threshold for circle centers: 5
5. Maximum circle radius: 250 pixels
6. Minimum circle radius: 100 pixels

The system uses the result of the HCT (circle
center x-position, circle center y-position, circle
radius) to draw the circle of the DEA area on the
image, with the circle radius being converted into
a DEA area in pixels2, strain being calculated
from the ratio in the area of the initial frame to the
area of the currently-processed frame. The
parameters of the HCT transformation were
obtained from the expected number of circles in
the image (1) and the expected radius range of the
DEA sample (100-250 pixels), and other
parameters being selected via tuning of the
system, making the system poorly adaptable in
the case of different DEA sample sizes.
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Fig. 14: Canny edge detection algorithm edge gradient and
angle equations, edge detector (Edge gradient of Point A is
referenced with point B and C to see if it forms a local
maximum along the gradient direction. If so, it is passed
through the thresholding function, if not, it is set to zero),
and hysteresis thresholding function [13]

The order of transformations of the CV system for
contoured DEA samples was identical to the CV
system for non-contoured DEA samples with the
exception of the initial edge detection algorithm.
The CV system for contoured DEA samples used
two parallel simple thresholding transformations,
which function by setting all pixels outside of a
range of HSV (hue, saturation, value) values in
the input image to black and setting all pixels
within the range of HSV values to white, enabling
the isolation of pixels of a particular color range.
This was used to create two parallel image masks
for the red pixels and the blue pixels present in
the DEA sample edge of the input image, with the
resultant image masks being combined in a

pixel-by-pixel OR operation to form the
black-and-white image of the detected DEA
sample edge. This transformation had much lower
runtime than the Canny edge detection filter as it
involved much fewer and simpler image
transformations, and had the added benefit of
significantly reducing the detection of the
electrodes and sample edge, enabling faster HCT
runtime and better measured strain precision than
the CV system for non-contoured DEA samples.

Fig. 15: Architecture of first iteration of CV strain
measurement system

In testing on the sample videos, both systems had
high runtimes (5.211 s/frame for contoured, 8.487
s/frame for non-contoured) due to a high number
of transformations and poorly-optimized HCT
parameters, and the disconnected architecture of
the CV system meant that two instances would
have to run concurrently to robustly function for
strain measurement of both non-contoured and
contoured DEA sample, further straining system
resources and increasing runtime.

The second iteration of the CV system consisted
of a single integrated system capable of operating
on both non-contoured and contoured DEA
samples, offering improved detection accuracy
and strain measurement runtime. The changes
from the first iteration include the use of simple
edge thresholding for both contoured and
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non-contoured edge detection, and tuning of the
HCT parameters to the following values:

1. Minimum distance between circle centers:
1400 pixels

2. Accumulator (grid) to image size ratio: 1:1
3. Edge detector threshold: 20 pixels
4. Accumulator threshold for circle centers: 5
5. Maximum circle radius: 500 pixels
6. Minimum circle radius: 100 pixels

These changes to the HCT parameters reduced the
grid size and reduced the number of circle
drawing attempts, and increased the range of
acceptable circle radii, significantly decreasing
runtime of HCT while increasing its robustness to
different sizes of DEA samples.

Fig. 16: Architecture of second iteration of CV strain
measurement system

In testing on the sample videos, the second
iteration demonstrated improved runtime versus
the first iteration, with an average runtime of
4.978 seconds per frame. Further improvements
in runtime were achievable by reduction of the
number of convolutions in the HCT, as well as by

reduction of the resolution of the input image to
reduce the grid size of HCT. Finally, the CV
system needs to be modified to function with
inputs of a live camera feed to be fully integrated
with the physical system and hardware.

The third iteration of the CV system consists of
the same architecture as the third system, with
tuning applied to restrict the range of red and blue
HSV pixel thresholds to eliminate the detection of
leads and electrodes as edges, further optimization
of HST parameters to reduce runtime, and
structuring of the CV analysis code as a function
that can be called on a given frame to allow for
the CV analysis to be integrated into existing
code, such as the data collection and
synchronization code, with low runtime impact.

The third iteration of the CV strain measurement
system demonstrated improved runtime versus the
second iteration, with an average runtime of 1.232
seconds per frame and a maximum runtime of
2.632 seconds per frame, representing a decrease
of 75.25% of average runtime and 3.746 seconds
per frame versus the second iteration. While this
runtime is insufficient to perform CV strain
measurement at 120 Hz (the framerate captured
by the camera), the system can parse video
footage at 40 Hz, making the average runtime of
the CV system sufficiently low to capture
accurate strain results.

Table 1: Results of First, Second, and Third CV System
Testing

Runtime
(s/frame)

Percent Runtime
Reduction

First Iteration 6.849 0.00%

Second Iteration 4.978 -27.32%

Third Iteration 1.232 -82.01%
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The system additionally contains a webcam
capture parser to convert MJPEG video files (the
video capture format of the USB camera) to
3-dimensional arrays containing pixel HSV data
for the captured frame, enabling the system to
process live video frames as they are captured by
the USB camera.

The third iteration of the CV strain measurement
system inputs a given video frame developed by
the parser, and outputs a 3-dimensional array of
the containing pixel HSV data of the detected
circle superimposed on the filtered input frame,
along with the area of the detected circle in
pixels2, with an average runtime of just under 3
seconds per frame.

Fig. 17: Architecture of third iteration of CV strain
measurement system

The data processing and synchronization backend
of the software system existed in two iterations,
with the first iteration providing a baseline for
functionality of the system, and the second
iteration containing optimizations to improve data
processing speed and the synchronization of data
streams, as well as to improve the clarity of the
user interface.

The first iteration of the data processing and
synchronization backend was developed around
the Python time module, which implements a
global clock with millisecond resolution, and the
Python CSV module, which allows for reading
and writing of CSV files. The global timer begins
counting at the start of the code, and continues
operating until the code stops executing due to
user input. The backend is built around a while
loop that continues as long as the webcam is
recording, and can be broken by the user pressing
the “Q” key. The webcam capture runs separately
to the while loop, with the most recently captured
frame being used when the strain measurement
function is called. The LabView data collection
software was modified to dump voltage and
impedance data to a csv file every second, which
the Python backend parses every second, offset by
0.2s after the LabView data dump, inserting the
data into the experimental data array. The strain
measurement is collected by running the CV
strain measurement function on the most recently
captured frame at the time that the strain
measurement function is called, with the
timestamp of the frame being recorded. Once the
strain measurement calculations are complete, the
circle area and strain measurement are inserted
into the experimental data matrix, with the circle
area and strain columns being backfilled until the
timestamp of the last recorded circle area and
strain data point. Once the user stops the webcam
and data recording loop by pressing “Q”, the
backend system writes the data array to a CSV
file and saves it to the user’s selected file path
(which can be modified in the code parameters).

The first iteration of the backend system was a
simple and effective method of data collection
and synchronizing the different data streams, but
could still be optimized to reduce runtime and to
streamline data processing and analysis work by
graphing relevant relationships and displaying
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live data readings for experimental parameter
monitoring.

Fig. 18: Block diagram of first iteration of backend system

Fig. 19: Full experimental data CSV file

The second iteration of the backend system was
built on the framework of the first iteration of the
backend system, with three key differences: The
second iteration uses an optimized array structure,
storing data points as float64 data types,
improving data processing time and reducing
runtime, creates a TCP/IP connection between
Python and LabView to enable live transmission
of voltage and LCR data, significantly improving
runtime, and houses all user functionality in a
lightweight UI that allows the user to start and
stop the data collection, displays voltage, LCR,
and strain, plots voltage-resistance and
voltage-strain data, and saves experimental data
and a video of the frames processed by the CV

strain measurement system over the course of the
experiment, enabling the resultant data and frames
to be parsed into a dataset of DEA testing results
for training of future ML-based models for
prediction of DEA behavior.

Fig. 20: Block diagram of second iteration of backend
system

Fig. 21: UI of second iteration of backend system

3.3 Prototyping and Integration of Framework

The prototype of the framework was designed to
replicate the system’s physical, hardware, and
software design as closely as possible, to allow
for testing of the framework’s functionality and
integration, as well as to allow for testing of the
framework with a DEA sample to assess the
performance of the system in an experimental
context.

The physical prototype was assembled to the
specifications and dimensions of the prototype
model, with the camera frame and the DEA
sample housing being 3D printed from gray PLA,
and the electronics housing being cut from
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transparent 3 mm acrylic sheets and assembled
using glue. The USB camera was secured to the
camera frame by means of tape to allow for easy
removal, while wires were used instead of M2
bolts to connect the camera frame and the DEA
sample housing to allow for easy disassembly.
The LED lighting system was mounted to the
inside of the DEA sample housing with
transparent tape, with the power wire being run
through one of the door openings of the DEA
sample housing. Two sets of doors, consisting of
two opaque and two transparent doors, were cut
from 3 mm acrylic sheets to allow for testing of
the effect of external lighting on the performance
of the CV strain measurement system.

Fig. 22: Image of physical prototype and hardware system

Fig. 23: Image of physical prototype and hardware system,
showing DEA sample in DEA sample housing and white
paper covering for lead holes

The hardware system, consisting of the power
supply, LCR meter, electronics, and the USB
camera, was configured identically to its intended
configuration in the integrated design, with the
exception of the assembly of the electronics
system, which was assembled on a breadboard
instead of a PCB for ease of assembly and placed
outside of the electronics housing during testing,
with leads being run through the DEA sample
housing doors. The electronic system contained
identical components to the components specified
in the integrated design and was connected and
configured according to the specifications in the
design, and therefore operated identically to the
final framework design.
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Fig. 24: Image of electronic system, used to isolate LCR
meter from high voltage signal supplied to DEA sample

Fig. 25: Image of full testing framework, consisting of
physical prototype, hardware (including electronic system),
and software (running on computer)

The software system consisted of the same
Python code and LabView code and configuration
as in the final framework design, with the only
difference being that the Python code was

compiled as a .ipynb file to allow for selective
code execution and easier collection and analysis
of relevant performance statistics, and that the
first iteration of the Python and LabView backend
was operated instead of the second iteration to
allow for easier modification of data collection
and data synchronization parameters.

Fig. 26: Image of testing framework software Left:
LabView backend, Right: Webcam output and Python
backend

The Python and LabView code were run on a
laptop running Windows 11 with 8 GB of RAM,
with no other applications running beyond Python
and LabView. This computer and these testing
conditions were held constant throughout testing
to assess the relative performance of the
framework to the previous testing methodology.

4. Testing of System and Results

Testing of the integrated framework prototype
was conducted to assess the time required to
perform a DEA sample test with the framework
and to compare its timing and accuracy
performance to the previous testing framework, as
well as to validate the integration and individual
performance of the physical, hardware, and
software systems.
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4.1 Integrated Framework vs. Existing
Framework Performance Test

4.1.1 Test Procedure

A standard test for comparing the performance of
the integrated framework to the previous testing
framework was devised and consisted of the
following components and procedure:

1. A previously-unseen 3-minute video file
of a contoured DEA sample undergoing
testing to failure is loaded onto the
standard testing computer (Due to time
and resource constraints, a recorded video
of a DEA sample test was used instead of
live video from the USB camera, this was
considered appropriate as the preparation
of the sample would take the same amount
of time across both the integrated and
existing testing frameworks. The
performance of the integrated framework
live footage of a DEA sample was
assessed in a separate test, described
below. A contoured DEA sample was used
to allow for human measurement of strain
in Step 3 of this test, as a non-contoured
DEA sample increases the difficulty of
and time required for manual strain
measurement)

2. The Python and LabView applications are
started and process the input video, with
50 equally-spaced frames being processed
for strain measurement, and plots of
voltage-resistance and voltage-strain being
generated, the time between the start and
end of the application operation being
recorded (50 frames were selected to
enable comparison to manual strain
measurement)

3. A lab technician performs strain
measurement by manual processing of
individual images on the same 50 input
frames and generates plots of

voltage-resistance and voltage-strain using
Excel or any other data manipulation tool,
the time required for the completion of
these tasks being recorded

4. The total data collection and processing
time for the integrated framework and
existing framework are compared

Given that this test is performed in a single trial,
by a single lab technician on a single given
sample video, the results are not intended to be an
exact measurement of the performance of the
integrated testing framework, but rather a rough
comparison of the performance of the integrated
testing framework and the previously existing
framework, to demonstrate the large-scale gains
in performance achieved by the integrated testing
framework.

This test was performed once due to time
constraints, with the results of the test being
tabulated in Table 2 below.

Fig. 27: Frame of previously-unseen DEA sample testing
video used in Test 4.1
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Fig. 28: Image of CV system runtime for test of integrated
framework (only the 50 equally-spaced frames were
counted in the strain measurement time of the integrated
framework runtime)

Fig. 29: Image of manual image measurement performed in
ImageJ

Fig. 30: Image of fully processed frame with circle detected
by HCT drawn in green, with center of circle marked in red

Table 2: Results of Integrated Framework vs. Existing
Framework Performance Test

Integrated
Framework

Existing
Framework

Data Collection (s) 180.000 180.000

Strain
Measurement (s) 61.600 1484.998

Plotting (s) 0.523 97.801

Total Runtime (s) 242.123 1762.799

4.1.2 Results and Discussion

The results in Table 2 demonstrate that the
integrated framework takes 242.123 seconds for
collecting, processing, and plotting of relevant
experimental data (voltage, impedance, strain) for
a single DEA sample test, compared to 1762.799
seconds for the existing framework, representing
a 86.26% decrease in total runtime with the
integrated framework. If two or more integrated
testing frameworks are operated in parallel (as
discussed in Section 5), these time savings
increase, with the overall runtime for a single
DEA sample test being inversely proportional to
the number of setups being run in parallel. These
results indicate that this framework can reliably
collect and process DEA testing data faster and
with more consistency than the existing testing
framework, and demonstrates that collection of
sufficient data to form a functional dataset of
DEA performance is feasible with a relatively
small number of sample testing units (consisting
of the physical system, the camera, and the
electronics system) in a parallel testing setup.
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4.2 Integrated System Live DEA Sample Test

4.2.1 Test Procedure

A test for verifying the functionality of the
integrated framework and validating the ability of
the system to operate correctly with live video
was devised and consisted of the following
components and procedure:

1. Load contoured DEA sample (or similarly
colored ring) into assembled testing setup
and attach electrodes and leads, but do not
turn on the power supply (Testing of the
expansion of a DEA was not tested due to
time and resource constraints, though a
test of the integrated framework on a
previously-unseen DEA sample testing
video that demonstrates considerable
testing and processing runtime reductions,
as performed in Section 4.1, provides an
sufficient indication of the functionality of
the CV system.)

2. Close doors of DEA sample housing,
using opaque doors

3. Start Python and LabView applications,
leave system running for 2 minutes and
record CV strain measurement system
processing time

4. Repeat Step 3, replacing opaque doors of
DEA sample housing with transparent
doors

The results of this test are tabulated in Table 3
below.

Table 3: Results of Live DEA Sample Test for Opaque
Doors and Non-Opaque Doors (Processing time in
seconds/frame)

Contoured DEA

Opaque Doors 1.289

Non-Opaque Doors 1.340

4.2.2 Results and Discussion

The results in Table 3 demonstrate that the
integrated framework is able to function with live
video and data inputs, and that the system is able
to sufficiently minimize the impact of outside
lighting on the CV strain measurement system.

5. Discussion and Future Work

The success of the presented integrated DEA
testing framework in accurately measuring DEA
strain and reducing DEA sample test runtime, as
well as the the low cost and resources required for
replication of the framework, enables this
framework to be recreated and used for DEA
sample testing in any soft robotics lab with access
to a 3D printer. The consistency of the testing
setup between trials and between different
instances of the same setup ensures that DEA
performance data collected using this framework
is usable in characterizing the performance of the
tested DEA sample independently of the
computing and measurement equipment of the lab
that collected the data or the skill of the lab
technician operating the tests.

The framework is also highly scalable and can be
easily parallelized to further increase time
savings, with the only components that need to be
replicated across a parallel setup being the
physical system, the USB camera, the voltage
isolation electronics, and the voltage and LCR
measurement device (although a LCR meter that
can use multiple leads allows a single LCR meter
to measure data across multiple testing setups),
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with the only limitation on the number of setups
that can be operated in parallel being the
computing resources and bench space available to
a given lab.

The ability of this framework to allow the
operation of upwards of 10 parallel testing setups
by a single lab technician with relatively modest
computing resources and a minimal power supply
setup enables a significant acceleration of DEA
sample testing and data collection.

Consequently, the presented framework can be
feasibly used by a single lab to compile a dataset
of DEA performance, with the quality and value
of this dataset growing exponentially with larger
parallel testing setups and replication of the
testing setup in other labs, offering the
opportunity for the operation of a collaborative
and low-cost research initiative to investigate the
properties and performance of a wide range of
DEA compositions and configurations, greatly
increasing the depth of knowledge of DEA
characterization and performance in the soft
robotics field.

Significantly, the dataset can be used in training
ML models to predict DEA performance given
inputs of voltage, composition, and configuration,
potentially enabling the development of better
control systems for DEAs, increasing the
feasibility of DEAs as artificial muscles in soft
robotics and prosthetic applications.

Future work with this framework should use the
system to characterize the performance of a wide
range of DEA compositions and configurations to
compile sufficient data for a training dataset, and
should then build and test a ML model for
predicting the performance of DEAs, with the
most likely model candidates for an effective
system being LSTMs or Transformers - however,
more research is needed to investigate the

feasibility of using such models for reliable
prediction of DEA performance.

Additionally, further research could benefit from
application of this framework with modifications
to the testing of other soft robotic actuator classes
that are similar in geometry and intended
applications to DEAs, with the most likely
candidates being Ionic Polymeric Artificial
Muscles, Soft Magnetic Artificial Muscles, and
Piezoelectric Artificial Muscles.

This thesis aimed to develop and demonstrate the
feasibility of an integrated testing framework to
accelerate the characterization of DEA samples,
with emphasis on reducing test runtime,
increasing repeatability and reproducibility of
tests, and system scalability. The requirements of
the system were compiled and used to guide the
design of the physical, hardware, and software
systems of the framework, with the challenges
encountered during the design process and the
implemented solutions being explored. Testing of
the integrated framework on a sample DEA video
and a live video input indicated that the system
accurately captures voltage, impedance, and strain
data for a DEA sample test, while significantly
reducing the test runtime, demonstrating the
feasibility of the integrated framework for
conducting wide-scale tests of DEA performance.

The results of this thesis demonstrate the high
feasibility of intensive exploration of DEA
performance and control compared to other
classes of artificial muscles, increasing the
potential of this class of soft robotic actuators for
use as artificial muscles in advanced robotic,
industrial, or prosthetic applications.
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