
A Semantic Parser to Convey Negation Meanings

from Natural Language

by

X. Zhang

Supervisor: Michael Gruninger

A thesis submitted for MIE498 Half-year Undergraduate Thesis

Faculty of Applied Science and Engineering

University of Toronto

1

Abstract

The objective of this thesis project is to create a semantic parser that converts natural

language queries into First-Order Logic formulae by utilizing a specified ontology.

The parser uses ccg2lambda compositional semantics system and the Natural

Language Toolkit (NLTK) Python library to identify the logical formula from a

parent-children tree that corresponds to a given natural language input sentence. In

this report, we present the development process of a negation template for the

semantic parser, including the problems encountered and possible solutions. We

evaluate the performance of the template using spatial sentence examples and discuss

possible improvement methods for templates developed. The methodology used

involves the creation of a syntactic parser using feature-based grammar from NLTK

and the development of a .fcfg file containing grammar and lexical rules. The findings

demonstrate the effectiveness of the developed template and the potential of using the

ccg2lambda system for natural language processing tasks.

Acknowledgements

I am deeply grateful for the invaluable assistance and guidance provided by my

supervisor, Professor Michael Gruninger, and the Master student, Yixin Sun, at the

Semantic Technology Laboratory. Without their unwavering support, this thesis

project would not have been possible. In particular, I would like to express my

heartfelt appreciation to Professor Michael Gruninger for providing me with such an

outstanding opportunity to expand my knowledge and skills.

Lastly, I would like to extend my utmost gratitude to my family and friends for their

constant love and encouragement throughout this academic journey.

2

Table of Contents

1.0 Introduction.. 4

2.0 Literature Review...5

3.0 Methods and Findings..9

3.1 Feature-based Context-Free Grammars (fcfg) file... 10

3.2 Lexical Rules..14

3.3 Tests for mapping from syntax to semantics..17

3.4 Problem encountered when creating the negation template.............................18

4.0 Limitations and Future Work... 22

5.0 Conclusion...23

6.0 References... 24

3

1.0 Introduction

In recent years, there has been significant attention given to natural language

question-answering (QA) systems. To translate natural language into query language,

semantic parsing is an essential component of these systems [1]. This thesis project

aims to solve the challenge of transforming natural language queries into First-Order

Logic formulae using a given ontology. However, as the literature demonstrates,

existing semantic parsers have typically been evaluated using knowledge databases,

which means their reported performance is based on general knowledge rather than

the specific knowledge required for a given application. To address this limitation, we

decided to create our own semantic parser with different templates. The proposed

ontology-based parser utilizes the ccg2lambda compositional semantics system and

Natural Language Toolkit (NLTK) Python library to find the corresponding logical

formula from a parent-children tree, given a natural sentence input. The output of this

parser is in First Order Logic (FOL). To check the performance of our templates, we

will use spatial sentence examples from the book "Language, Proof and Logic" by Jon

Barwise & John Etchemendy.

This report provides a clear explanation of the methodology used to develop a

negation template for the semantic parser. It also describes the problems encountered

during the template development process and possible solutions. The future work

section includes an assessment of the template's effectiveness and performance and

possible improvement method for templates developed.

4

2.0 Literature Review

To fully grasp the content of this thesis, it is essential to have a solid understanding of

the ccg2lambda compositional semantic system and the Natural Language Toolkit

(NLTK) Python library, as they serve as necessary background knowledge.

Ccg2lambda is a semantic parser that obtains meaning representations from a

Combinatory Categorial Grammar (CCG) tree [2]. It is a popular tool in the field of

natural language processing due to its ability to handle different ontologies

interchangeably. The system is designed to generate logical semantic representations

of sentences in a simple and user-friendly manner. It operates by composing semantic

formulas bottom-up using a CCG parse tree [2]. This approach allows for the efficient

translation of natural language into logical expressions, making it a valuable resource

for a variety of NLP applications. The system's components are illustrated in Figure 1

below. Currently, for this thesis project, our focus is on developing various semantic

templates, which correspond to the first half of the flow shown in the figure.

Figure 1: System pipeline for Ccg2lambda compositional semantic system [2]

The system is composed of three stages. In the first stage, the C&C CCG parser,

which is a linguistically motivated parser known for its high efficiency, is used to

parse sentences into CCG trees. The parser employs a supertagger to assign CCG

5

lexical categories to words in a sentence and can request additional categories if it

cannot find a spanning analysis [3]. In the second stage, the system performs semantic

compositions by constructing meaning representations (MRs) compositionally over

CCG trees using lambda calculus. The semantic composition is obtained from a

declarative YAML file, which can be replaced with any ontology [2]. The template

requires two attributes: semantics and category. The attribute semantics should

conform to NLTK semantics format and be in lambda terms. Syntactic and semantic

mappings generate a CCG tree with each node annotated in the format of <tokens>,

<ccg>, and <semantics>. An example of parsing sentences into CCG trees is

illustrated in Figure 2. The third stage involves theorem construction and the

definition of predicate types, which is not the focus of our project and will not be

discussed further for now [2].

Figure 2: CCG derivation tree and simplified semantics of the sentence “Some

woman ordered tea” [2]

Figure 2 provides a detailed depiction of the derivation tree, which encompasses

several components. The nodes of the tree comprise CCG syntactic categories that are

listed beneath each word in the sentence. For example, the word “woman” is

categorized as N (Noun), while “ordered” is categorized as (S\NP)/NP. This particular

category is a type-raising CCG category, where the backward slash “\” and forward

slash “/” symbols indicate the direction of the function application. Essentially, this

category can be understood as a function that takes an NP (Noun Phrase) as its

6

argument and returns a function that takes an S (Sentence) as its argument, ultimately

resulting in an NP (Noun Phrase). In this context, it signifies “ordered” as a transitive

verb phrase [4]. Beneath the syntactic representations, each phrase is accompanied by

a corresponding logical semantic representation, such as λx.woman(x) for the word

“woman”. The system operates by taking syntactic categories as input and producing

logical formulas as output. In addition, the figure displays the token base forms in the

leaves, and the symbols “<”, “>”, and lex (used to specify the combination rule of that

inner CCG node) signify the left and right function application rules and type-shift

rules in C&C, respectively. These rules and syntactic categories work together to

guide the semantic composition process, which is facilitated by semantic templates

that describe the specific semantics of the phrases [2]. The actual output of the

ccg2lambda system for the sentence “Some woman ordered tea” is presented in

Figure 3 below.

Figure 3: Semantic output of ccg2lambda for the sentence “Some woman did not

order coffee.” [2]

The category attribute of the semantic template can impose certain requirements on

the feature structures of CCG nodes that are generated by the CCG parser. If a CCG

node's feature structure and syntactic category correspond with those defined in the

semantic template, the template will be applied. To illustrate, suppose the semantic

template stipulates an NP[dcl = true] syntactic category. This will match a CCG node

with either an NP[dcl = true] or NP[dcl = true, adj = true] category, as illustrated in

7

Figure 3. Additional attributes can be incorporated into the semantic template to

specify more conditions for matching with CCG nodes. The “lex” attribute is utilized

in the aforementioned example to specify the combination rule for the inner CCG

node [2].

By default, the Natural Language Toolkit (NLTK) is primarily a library for natural

language processing (NLP) and not for semantic parsing specifically. However, the

NLTK package does provide some tools for working with semantic representations of

language, such as the ccgchart parser. The chart parsing tool demonstrates the process

of parsing a single sentence with a given grammar and lexicon. The chart parsing tool

provides users with the ability to control the parsing algorithm in a flexible manner.

At every stage of the algorithm, the user can choose which rule or strategy they want

to use, enabling them to try various combinations of strategies, such as top-down and

bottom-up, and experiment with different approaches [5]. The parser works by

constructing a chart, which is a two-dimensional array of cells that represent the

possible constituents of the sentence, and then applying the CCG rules to the chart,

combining cells and creating new ones until it reaches the top of the chart, where the

entire sentence has been parsed [6]. An example parsing output of the ccgchart parser

for the sentence “I cook and eat the bacon” is shown in Figure 4 below.

Figure 4: Example output of ccgchart parser for the sentence “I cook and eat the

bacon”

8

3.0 Methods and Findings

In the past, we have explored several types of semantic parsers, such as FREYA,

PANTO, Pythia, SEMPRE, and ccg2lambda. We used pure first-order logic to ensure

that all intended semantics were fully captured. After evaluating the performance of

each parser, our team concluded that ccg2lambda is the most suitable foundation for

our work, as ccg2lambda allows us to freely swap ontology templates and generate

logical formulae in lambda calculus form. However, the C&C parser used in

ccg2lambda is deprecated and difficult to set up and operate. Consequently, we

decided to create our own template instead of relying on existing ones. This thesis

paper focuses mainly on developing the negation template.

To build up a semantic parser, a syntactic parser is crucial, requiring Part of

Speech(POS) tags and semantic features for each token. Words can be categorized

into different lexical or part-of-speech categories, including but not limited to, Nouns,

Verbs, and Articles. These categories are represented by POS tags such as NN

(Noun), VB (Verb), and AT (Article). To commence processing the input text

effectively, it is necessary to segment it into various linguistic units such as words,

punctuation, numbers, or alphanumerics, which are commonly referred to as tokens

[7]. Feature-based grammar from NLTK is useful for this process, as it provides an

abundance amount of well-developed .fcfg documentation that contains syntactic and

lexical rules [8]. To parse a sentence, the program will first split the sentence into

separate words and will then loop and search through the grammar file to identify the

suitable feature tag, which contains lexical rules for each parsed natural language

token. It will then merge their semantic representations based on the predefined

grammar rules. The parser will generate two outputs: a grammar parse tree that
9

provides a clearer visualization of the sentence structure and the semantic formula.

Figure 5 below shows the general structure of the semantic parsing process.

Figure 5: Semantic parsing process

To test and develop a newly developed template, two files are essential. One is the

.fcfg file which records all the grammar and lexical rules defined, the other one is the

.py test file for mapping from syntax to semantics.

3.1 Feature-based Context-Free Grammars (fcfg) file

Grammar fcfg file contains two parts: grammar rules and lexical rules.

Grammar rules specify the syntactic categories and features of the elements being

combined and including a left-hand side (LHS) and a right-hand side (RHS). The

LHS specifies the syntactic category of the element being generated, such as a noun

phrase (NP), verb phrase (VP), or sentence (S). The RHS specifies a set of features

that define the properties of the element. These features can include tense, aspect,

number, gender, case, and other grammatical properties[7][8]. A simple grammar rule

template example is demonstrated below:

10

𝑆 [𝑆𝐸𝑀 =<? 𝑠𝑢𝑏𝑗(? 𝑣𝑝) >] −> 𝑁𝑃[𝑁𝑈𝑀 =? 𝑛, 𝑆𝐸𝑀 =? 𝑠𝑢𝑏𝑗] 𝑉𝑃[𝑁𝑈𝑀 =? 𝑛, 𝑆𝐸𝑀 =? 𝑣𝑝] (1)

𝑁𝑃[𝐿𝑂𝐶 =? 𝑙, 𝑁𝑈𝑀 =? 𝑛, 𝑆𝐸𝑀 =? 𝑛𝑝] −> 𝑃𝑟𝑜𝑝𝑁[𝐿𝑂𝐶 =? 𝑙, 𝑁𝑈𝑀 =? 𝑛, 𝑆𝐸𝑀 =? 𝑛𝑝] (2)

𝑉𝑃[𝑁𝑈𝑀 =? 𝑛, 𝑆𝐸𝑀 =<? 𝑣(? 𝑜𝑏𝑗) >] −> 𝑇𝑉[𝑁𝑈𝑀 =? 𝑛, 𝑆𝐸𝑀 =? 𝑣] 𝑁𝑃[𝑆𝐸𝑀 =? 𝑜𝑏𝑗] (3)

𝑆 [𝑆𝐸𝑀 =<? 𝑝𝑝(? 𝑣𝑝) >] −> 𝑁𝑃[𝑁𝑈𝑀 =? 𝑛, 𝑆𝐸𝑀 =? 𝑠𝑢𝑏𝑗] 𝑉𝑃[𝑁𝑈𝑀 =? 𝑛, 𝑆𝐸𝑀 =? 𝑣𝑝] (4)

Rule (1) can be understood as follows:

Left-hand side:

- is the syntactic category, stands for Sentence here.𝑆

- The square brackets “[]” enclose the feature structure, which is a set of

attributes that define the semantics of the sentence.

- stands for “semantic value”, which refers to the meaning of the sentence.𝑆𝐸𝑀

- The question mark (?) is a variable that stands for an unknown value, which

will be specified later in the rule.

- is the semantic value of the sentence. This means𝑆𝐸𝑀 =<? 𝑠𝑢𝑏𝑗(? 𝑣𝑝) >

that the meaning of the sentence is a pair consisting of a subject (subj) and a

verb phrase (vp).

Right-hand side:

- and are also syntactic categories, which means they can be generated𝑁𝑃 𝑉𝑃

by other rules in the grammar. For instance, a verb phrase (VP) can also be

decomposed into a concatenation of a transitive verb (TV) and another noun

phrase (NP), as shown in Rule (3) above.

- is another feature that specifies the number, shown as 𝑁𝑈𝑀 𝑁𝑈𝑀 = 𝑠𝑔

(singular) or (plural) of the noun phrase and verb phrase. It is𝑁𝑈𝑀 = 𝑝𝑙

assigned a value with the equals sign (=).

11

- The values of the features are specified using the question mark (?) variables,

which are then unified with values in other parts of the rule. For example, the

value of in will be unified with the value? 𝑛 𝑁𝑃[𝑁𝑈𝑀 =? 𝑛, 𝑆𝐸𝑀 =? 𝑠𝑢𝑏𝑗]

of in . It’s important to ensure that these? 𝑛 𝑉𝑃[𝑁𝑈𝑀 =? 𝑛, 𝑆𝐸𝑀 =? 𝑣𝑝]

values are consistent across the grammar rules. For example, if a sentence

contains , it must also contain for the parser𝑁𝑃[𝑁𝑈𝑀 = 𝑠𝑔] 𝑉𝑃[𝑁𝑈𝑀 = 𝑠𝑔]

to process it correctly. This requirement applies to all grammar rules. For

instance, the parser can successfully parse the sentence “a small dodecahedron

is not red” but not “a small dodecahedrons is not red”, as the value in𝑁𝑈𝑀

“a” (singular) is not consistent with “dodecahedrons” (plural) in the sentence."

- and are the semantic values of the noun phrase and𝑆𝐸𝑀 =? 𝑠𝑢𝑏𝑗 𝑆𝐸𝑀 =? 𝑣𝑝

verb phrase, respectively. They will be unified with the semantic value of the

sentence in the final derivation. By altering a rule, such as changing Rule (1)

to Rule (4), the resulting parse tree for a given sentence may differ. For

example, the sentence “a small dodecahedron is not red” may produce

different parse trees, such as those illustrated in Figure 6 and Figure 7.

Figure 6: Semantic parsing result with Rule (1)

Figure 7: Semantic parsing process with Rule (4)

𝑆 [𝑆𝐸𝑀 =<? 𝑣𝑝(? 𝑠𝑢𝑏𝑗) >] −> 𝑁𝑃[𝑁𝑈𝑀 =? 𝑛, 𝑆𝐸𝑀 =? 𝑠𝑢𝑏𝑗] 𝑉𝑃[𝑁𝑈𝑀 =? 𝑛, 𝑆𝐸𝑀 =? 𝑣𝑝] (5)

𝑆 [𝑆𝐸𝑀 =<? 𝑠𝑢𝑏𝑗(? 𝑣𝑝) >] −> 𝑉𝑃[𝑁𝑈𝑀 =? 𝑛, 𝑆𝐸𝑀 =? 𝑣𝑝] 𝑁𝑃[𝑁𝑈𝑀 =? 𝑛, 𝑆𝐸𝑀 =? 𝑠𝑢𝑏𝑗] (6)

12

Through my experiments, I discovered that the order of the LHS of grammar rules is

not important. However, altering the order of features on the RHS can result in a

different semantic structure, so one must be careful to avoid errors. For instance, Rule

(5) and Rule (1) have the same meaning, while Rule (6) changes the concatenation

from to . Rule (5) can successfully parse “Mary chases John.”𝑉𝑃 + 𝑁𝑃 𝑁𝑃 + 𝑉𝑃

while Rule 6 can only parse the sentence “Mary John chases.” which has the potential

to cause parsing errors.

In summary, the structure of grammar rules is hierarchical. This means that sentences

are initially broken down into fundamental phrases, such as NP and VP. The Parts of

Speech and cases that form each respective phrase are then specified. Rule (1) can be

broken down into Rule (2) and Rule (3), and there are many other grammar rules that

provide us with the possibility and flexibility to construct more complex sentence

structures by combining different grammar rules.

In order to simplify the understanding and implementation of the grammar rules

outlined in the fcfg file, Tables 3.1.1 and 3.1.2 have been included. These tables

summarize the meaning of the various syntactic categories and symbols used

throughout the template, providing a helpful reference for users.

Table 3.1.1: Syntactic Categories Summary

Symbol Meaning Example Symbol Meaning Example

𝑆 Sentence Mary chases John 𝑃𝑟𝑒𝑑𝑁 Predicative Noun student

𝑁𝑃 Noun Phrase A cube 𝑃𝑃 Prepositional Phrase with telescope

𝑉𝑃 Verb Phrase chase a dog 𝐴𝑑𝑗 Adjective small

𝐷𝑒𝑡 Determiner the 𝑁𝑜𝑚 Nominals small cube

13

𝐶𝑜𝑛𝑗 Conjunction and 𝑃𝑟𝑜𝑝𝑁 Proper Noun Mary

𝑃𝑟𝑒𝑑𝑃 Predicative Phrase smells good 𝑁 Noun dog

𝐼𝑉 Intransitive Verb bark 𝑃 Preposition in

𝑇𝑉 Transitive Verb see 𝐴𝐷𝑉 Adverb rarely

𝐴𝑢𝑥 Auxiliary is 𝑁𝑒𝑔 Negation not

Table 3.1.2: Other Symbols Summary

Symbol Meaning Symbol Meaning

[] enclose the feature structure 𝑆𝐸𝑀 “semantic value”, which refers to the meaning
of the sentence

? a variable that stands for an unknown value 𝑁𝑈𝑀 “number”, is used to indicate whether a noun
phrase or verb phrase is singular or plural. The
value of the NUM attribute can be for"𝑠𝑔"
singular or for plural"𝑝𝑙"

𝑠𝑢𝑏𝑗 a variable to represent the semantic value of
the subject of the sentence

𝐿𝑂𝐶 “locative”, is used to indicate the location or
place where the action described by the noun or
verb phrase takes place

𝑎𝑝𝑝 function symbol stands for “application”.
When we apply the “app” function to and? 𝑣

, we are combining their meanings to get? 𝑣𝑝
the meaning of the entire verb phrase

𝐶𝑂𝑃 “copula” or “linking verb”, is used to indicate
whether the verb phrase is a copular or linking
verb phrase

𝑝𝑟𝑑, 𝑙
etc.

stands for predicate; indicates the value𝑝𝑟𝑑 𝑙
; stands for ;𝐿𝑂𝐶 𝑛 𝑁𝑜𝑢𝑛

the same logic applies to other syntactic
categories

+ used to indicate that a feature has a positive or
present value. It is often used to specify the
presence of a particular feature in a rule

− similar to , it is used to indicate that a+
feature has a negative or absent value

| used to specify alternative feature values for a
particular feature in a rule

3.2 Lexical Rules

The combination of individual words in a language is governed by lexical rules,
which dictate how words are combined with other words or morphemes to form
phrases or more complex linguistic structures. These rules modify the argument
structures of lexical items, thereby changing their combinatory properties. In this way,
it becomes clear that the meaning and syntactic properties of a sentence depend not

14

only on the individual words used but also on how those words are combined. Lexical
rules play a crucial role in the generation and analysis of a wide range of linguistic
structures in FCFGs, as they specify the properties of individual words and how they
can be combined with other words. The existence of lexical rules also allows for the
generation of novel sentences that may not have been seen before. With the ability to
combine words in a multitude of ways, the semantic parser is able to parse an infinite
number of grammatical and meaningful sentences according to the previously
established grammar rules [9]. A simple grammar rule template example is
demonstrated below:

𝑃𝑟𝑜𝑝𝑁[− 𝐿𝑂𝐶, 𝑁𝑈𝑀 = 𝑠𝑔, 𝑆𝐸𝑀 =< \𝑃. 𝑃(𝑚𝑎𝑟𝑦) >] −> '𝑀𝑎𝑟𝑦' (7)

𝑃𝑟𝑜𝑝𝑁[− 𝐿𝑂𝐶, 𝑁𝑈𝑀 = 𝑠𝑔, 𝑆𝐸𝑀 =< \𝑃. 𝑃(𝑗𝑜ℎ𝑛) >] −> '𝐽𝑜ℎ𝑛' (8)

𝑇𝑉[𝑁𝑈𝑀 = 𝑠𝑔, 𝑆𝐸𝑀 =< \𝑋 𝑦. 𝑋(\𝑥. 𝑐ℎ𝑎𝑠𝑒(𝑦, 𝑥)) >, 𝑇𝑁𝑆 = 𝑝𝑟𝑒𝑠] −> '𝑐ℎ𝑎𝑠𝑒𝑠' (9)

𝑇𝑉[𝑁𝑈𝑀 = 𝑝𝑙, 𝑆𝐸𝑀 =< \𝑋 𝑦. 𝑋(\𝑥. 𝑐ℎ𝑎𝑠𝑒(𝑦, 𝑥)) >, 𝑇𝑁𝑆 = 𝑝𝑟𝑒𝑠] −> '𝑐ℎ𝑎𝑠𝑒' (10)

Similar to the grammar rule, the lexical rules also have an LHS and RHS, Rule (7)

can be understood as follows:

Left-hand side:

- indicates this lexical rule is defined for the proper noun category.𝑃𝑟𝑜𝑝𝑁

- means The absence of the location feature (not marked with LOC)− 𝐿𝑂𝐶

indicates that the member (word on the RHS) does not have a locational

meaning

- is the singular number feature means that the noun refers to a𝑁𝑈𝑀 = 𝑠𝑔

single entity.

- is a lambda calculus expression that represents the𝑆𝐸𝑀 =< \𝑃. 𝑃(𝑚𝑎𝑟𝑦) >

meaning of the member. In this case, the expression < \𝑃. 𝑃(𝑚𝑎𝑟𝑦) >

represents a function that takes one argument and returns the result of𝑃

applying to the constant value "mary". The before P indicates that the𝑃 "\"

function takes one argument, which is represented by the variable . The"𝑃. "

15

function body , means that the function applies the argument to𝑃(𝑚𝑎𝑟𝑦) 𝑃

the constant value “mary”, which serves as the value presented in the semantic

result. If the body of the function were instead, then “Mary” would be𝑃(𝑚)

interpreted as “m” in the final parse tree.

Right-hand side:

- this indicates the word "Mary" is a member of this category .𝑃𝑟𝑜𝑝𝑁

Follow the same logic, Rule (10) can be simply interpreted as follows:

The rule defining the word “chase” is a member of the transitive verb category(𝑇𝑉)

with the features of plural number , present tense , and(𝑁𝑈𝑀 = 𝑝𝑙) (𝑇𝑁𝑆 = 𝑝𝑟𝑒𝑠)

the expression represents a function that takes two< \𝑋 𝑦. 𝑋(\𝑥. 𝑐ℎ𝑎𝑠𝑒(𝑦, 𝑥)) >

arguments and and returns the result of applying to the lambda function that(𝑋 𝑦) "𝑋"

applies the verb "chase" to the arguments y and x. The before and"\" "𝑋" "𝑦"

indicates that the function takes two arguments, which are represented by the

variables and . The function body, , means that the"𝑋" "𝑦. " 𝑋(\𝑥. 𝑐ℎ𝑎𝑠𝑒(𝑦, 𝑥))

function applies the argument to the lambda function that applies the verb "chase""𝑋"

to the arguments and ."𝑦" "𝑥"

In order to prevent value errors, it is crucial to define all words within an input

sentence in the corresponding lexical rules. As an example, consider the sentence

"Mary chases John." If Rules (7), (8), and (9) are utilized, then the sentence can be

parsed successfully. However, if Rules (7), (8), and (10) are used instead, an error will

occur, as illustrated in Figure 8 below:

Figure 6: Semantic parsing result for the sentence “Mary chases John” with Rule (7),

(8) and (10)
16

3.3 Tests for mapping from syntax to semantics

Using the code snippet below, we can test the correctness of the grammar rule and

lexical rules defined in the fcfg file.

Code Snippet 1: test from syntax to semantics

import nltk

#nltk.download('all')

from nltk.ccg import chart, lexicon

from nltk.ccg.chart import printCCGDerivation

from nltk.sem.logic import *

gramfile = 'nltk_data/grammars/sample_grammars/spatial-sem.fcfg'

inputs = ['Mary chases John']

def parsing(new_sent, gram):

parses = nltk.parse_sents(new_sent, gram)

for sent, trees in zip(new_sent, parses): #parallel iterations

for tree in trees:

print("Parse:\n %s" %tree) #print out the parsing process

print("Semantics: %s" % nltk.root_semrep(tree)) #print out the parse result

parsing(inputs,gramfile) # call the parsing function to test the parser

To parse the sentence, we need to provide the input along with the gramfile which

records the path to our fcfg file. By applying Rules (1), (2), (3), (7), (8), and (9), we

can obtain the parsing output as shown below:

Parse:

17

(S[SEM=<chase(mary,john)>] # indicates the semantics of the sentence

(NP[-LOC, NUM='sg', SEM=<\P.P(mary)>] # first level decomposition

(PropN[-LOC, NUM='sg', SEM=<\P.P(mary)>] Mary)) # found and matches Mary

(VP[NUM='sg', SEM=<\y.chase(y,john)>] # first level decomposition

(TV[NUM='sg', SEM=<\X y.X(\x.chase(y,x))>, TNS='pres'] chases)# second level

(NP[-LOC, NUM='sg', SEM=<\P.P(john)>] #second level

(PropN[-LOC, NUM='sg', SEM=<\P.P(john)>] John)))) #thrid level, matches John

Semantics: chase(mary,john)

The output provides a clear demonstration of the parsing process for the sentence

"Mary chases John." The system employs a bottom-up procedure to parse the

sentence, following a syntactic tree and exploring all child nodes. At each child node,

it searches for the phrase map that matches the current word until it finds the structure

that fits the word. Once all words in the sentence have found their corresponding

match, the tree is combined, and the final parse result is displayed. This process

ensures that the sentence is parsed accurately and efficiently, providing a

comprehensive analysis of its underlying structure.

3.4 Problem encountered when creating the negation template

There were many problems encountered during the template development process,

below section lists the main problem encountered and possible solutions for them.

1. The nltk module is not working or can not be found as shown in Figure 7.

Figure 7: Error message when importing the nltk module

18

- One of the main reasons why this error occurs is because the wrong version of

the Python interpreter is being used. As you can see in Figure 7, the error is

generated when Python 3.7 is used. However, if we switch to Python 3.11, we

can resolve this issue.

- Another solution is to manually install the nltk package into the integrated

development environment (IDE) that we’re using. To ensure that the system is

running smoothly, we can simply run the code “nltk.download(all)” to

download all the necessary packages.

2. The system did not yield any parsing results, nor did it generate any error

messages, as shown in Figure 8 below.

Figure 8: No parsing result obtained despite error-free execution

This could happen under serval circumstances:

a) The grammar rule defined is not able to match all words in the input

sentence.

- a potential solution is to manually analyze the sentence

structure and cross-check with the grammar hierarchy tree to

ensure that the structure can be combined using the existing

grammar rules.

b) The input sentence contains grammar errors. For example, the system

may fail to parse sentences like “a cube are not a dodecahedron,” even

though the sentence structure can be combined using the grammar rule

defined in the fcfg file.

- Checking the sentence structure and ensuring the consistency

19

of features(Tense, Num etc.) will fix the issue.

We also encountered a specific issue related to defining lexical rules with incorrect

parts of speech. This problem manifested itself in one of two ways: either the system

produced no output (as shown in Figure 8), or it generated incorrect output (as shown

in Figure 9).

Figure 9: Incorrect parsing output for the sentence “Mary not walk”

In one instance, we defined the part of speech for negation as Conjunction

and attempted to parse the(𝐶𝑜𝑛𝑗[𝑆𝐸𝑀 =< \𝑃. \𝑥. (¬𝑃(𝑥)) >] −> '𝑛𝑜𝑡')

sentence “Mary not walk”. The output we received (as shown in Figure 9) indicated

that although the system had recognized the presence of “not” in the sentence and

matched it with the appropriate lexical rules, it had failed to apply the negation

relationship to the verb “walk”. Similar issues arose when we parsed other sentences

containing negation. Although the negation sign might appear, it was not always in

the correct position. For example, when we parsed the sentence “Mary does not chase

John” with the lexical rules for “not” defined as Conjunction, the system produced the

result “chase(Mary, -John)”, which is incorrect.

Regrettably, I couldn't determine the reason behind the negation displaying in the

incorrect location in the parsing outcome. Nevertheless, I was able to resolve the issue
20

using an alternative approach. I drew inspiration from the ccg2lambda template that

was developed on GitHub and attempted to devise a new category known as "Neg"

[10]. By emulating existing lexical rules and reassessing the structure of the sentence,

the novel template proved to be successful, and it produced an accurate parsing result.

The outcome obtained using the new negation template is illustrated in Figure 10.

Figure 10: Parsing result for the sentence “A cube is not a dodecahedron”

In a manner similar to the explanation provided in section 3.3, we can observe that the

word “not” is being recognized as part of the Auxiliary Phrase along with “is”, while

the noun “dodecahedron” is identified as a Predicate Noun. This also demonstrates

that a single word may be parsed differently as part of various phases (such as PredN

or Nominal Noun for dodecahedron). Therefore, it is necessary to define a diverse set

of grammar rules to facilitate the incorporation of various sentence structure

combinations. Additionally, it is worth noting that including identical grammar and

lexical rules in the fcfg file does not lead to parsing errors.

21

4.0 Limitations and Future Work

It is evident that the parser design comes with an inherent constraint as the semantic

representation is constructed through a comprehensive compilation of grammar and

lexical rules, which generates a hierarchical tree. Careful formulation of the grammar

rules is imperative to ensure that all children nodes are appropriately linked to their

respective parent nodes, thus facilitating upward movement in the tree. The tool's

unique feature is the assignment of semantic tags to every node in the tree. However,

handling universal quantifiers, conjunctions, propositions, and multivariable

situations is an area that requires further investigation in relation to semantic

representation.

One area for future work on this project is to continue developing new templates and

refining the current negation template. While the current template can handle most

cases of negation, such as “not” and “no”, it struggles with certain sentences that

contain ambiguous words. For example, when parsing the sentence “Cube A is not

red”, the output is , which fails to indicate that the cube is"𝑐𝑢𝑏𝑒(\𝑥. − 𝑙𝑎𝑟𝑔𝑒(𝑥))"

specifically referred to as “A”.

In addition to refining the negation template, integrating it with other templates could

also help parse more complex sentences. This could involve incorporating additional

templates for specific types of phrases or clauses, or further refining existing

templates to handle a wider range of sentence structures.

22

5.0 Conclusion

This thesis project aims to create a semantic parser that transforms natural language

queries into First-Order Logic (FOL) formulae using a given ontology. The proposed

ontology-based parser utilizes the ccg2lambda compositional semantics system and

Natural Language Toolkit (NLTK) Python library to find the corresponding logical

formula from a parent-children tree given a natural sentence input. We concluded that

ccg2lambda is the most suitable foundation for their work, as it allows for the

efficient translation of natural language into logical expressions. However, the C&C

parser used in ccg2lambda is deprecated and difficult to set up and operate, so we

decided to create our own template instead. The report focuses on the methodology

used to develop a negation template for the semantic parser and also describes the

importance of feature-based grammar in processing input text effectively. A detailed

explanation of grammar rules and lexical rules is also included in the methods and

findings section. Overall, the report provides a clear explanation of the methodology

used to develop a negation template for the semantic parser, including the problems

encountered during the template development process and possible solutions. The

future work section includes an assessment of the template's performance and

possible improvement methods for templates developed.

Please note that the spatial-sem.fcfg file provides the template, and the code for

testing the template is contained in the spatial.py file.

23

6.0 References

[1] P. Liang, “Learning executable semantic parsers for natural language
understanding,” arXiv.org, 22-Mar-2016. [Online]. Available:
https://arxiv.org/abs/1603.06677. [Accessed: 06-Apr-2023].

[2] P. Martínez-Gómez, K. Mineshima, Y. Miyao, and D. Bekki, “CCG2LAMBDA: A
compositional semantics system,” ACL Anthology. [Online]. Available:
https://aclanthology.org/P16-4015/. [Accessed: 06-Apr-2023].

[3] B. Djordjevic, J. R. Curran, and S. Clark, “Improving the Efficiency of a
Wide-Coverage CCG Parser.” [Online]. Available:
http://web.archive.org/web/20170810182437/http://www.cl.cam.ac.uk/~sc609/pubs/i
wpt07efficiency.pdf. [Accessed: 06-Apr-2023].

[4] “A very short introduction to CCG - school of informatics, university of ...”
[Online]. Available:
https://www.inf.ed.ac.uk/teaching/courses/nlg/readings/ccgintro.pdf. [Accessed:
06-Apr-2023].

[5] E. Loper and S. Bird, “NLTK: The natural language toolkit,” arXiv.org,
17-May-2002. [Online]. Available: https://arxiv.org/abs/cs/0205028. [Accessed:
06-Apr-2023].

[6] NLTK. [Online]. Available: https://www.nltk.org/howto/ccg.html. [Accessed:
06-Apr-2023].

[7] 8. analyzing sentence structure. [Online]. Available:
https://www.nltk.org/book/ch08.html. [Accessed: 06-Apr-2023].

[8] 9. building feature based grammars. [Online]. Available:
https://www.nltk.org/book/ch09.html. [Accessed: 06-Apr-2023].

[9] “Chapter 1 Introduction - York University.” [Online]. Available:
https://wiki.eecs.yorku.ca/course_archive/2016-17/W/3611/_media/eecs3611_lecture1
.pdf. [Accessed: 06-Apr-2023].

[10] Mynlp, “Ccg2lambda/SEMANTIC_TEMPLATES_EN_EVENT.YAML at
master · mynlp/CCG2LAMBDA,” GitHub. [Online]. Available:
https://github.com/mynlp/ccg2lambda/blob/master/en/semantic_templates_en_event.y
aml. [Accessed: 06-Apr-2023].

24

