MIE1514H - Systems Design and Engineering
A Product Perspective

Instructor: Professor Nashed A. Youssef
Cell: (416) 318-3830
Email: nashed.youssef@utoronto.ca

Course Topics:
- Systems level thinking in products development
- What is a system and what is systems engineering?
- System engineering process
- System Lifecycle
- The role of the systems engineer
- Morphology of systems level design
- Forecasting the future and strategy development
- System level design requirements
- Product architecture, concept generation
- Elements of Concept Architecting
- Stage Gate Process
- Technology Readiness Level TRL
- Benchmarking
- Modeling and Simulation
- Mistake Proofing
- Verification vs. validation
- System optimisation
- Multidisciplinary optimisation
- System competitive analysis
- Risk assessment and technical readiness level
- Margins and contingency
- Customer delight
- System reliability

Prerequisite: Bachelor of Engineering.

Purpose of the Course: The course objective is to familiarize students with the principles and methods of systems engineering in the design of products. It includes specific practical examples and projects to aid in understanding and appreciating fundamental principles. Students will apply the various systems engineering methods and techniques as appropriate across all phases of a product’s life cycle. The course will prepare students who are or will be involved in high technology complex systems, and the preliminary and detailed design of products.

The course will be delivered using mixture of formal presentations, informal discussions, and applications of key aspects of systems engineering. A term project to create and develop a product will allow students to put theory into practice.
Grading Scheme: Timely assignments submission: 50%, term project final report: 25%, project oral presentation: 25%.

Term project: The student selects a product of choice. The students may team with another student for one project. The project involves the understanding of the product design, applying system engineering. The student develops customer requirements, develop alternatives and compare them to the existing design, develop some criteria that may help select one alternative as most likely to succeed and describe how it will improve on the existing design, discuss what the limitations are, and why it is a better than the existing design. The student applies the systems engineering methods and techniques as explained in the course assignments and as appropriate.

The marking scheme for the written reports is as follows: Clarity 20%, technical content 40%, quality 20% and discussion/conclusion 20%

Project Abstract Submission: An abstract of proposed project topic will be submitted in the third week of the course.

Oral presentations: An oral presentation based on the project will be presented to the class. The presentations should demonstrate an increase in the breadth of knowledge obtained from the course and expose additional related topics.

The date and time for the presentation will be agreed upon on the 8th week of the course. Presentations will be 15 to 20 minutes in length given during the last three lecture periods.

The marking scheme for the oral presentations is as follows: Clarity 20%, technical content 40%, quality and delivery 20% and ability to manage discussions 20%.

Resources:
Boeing Systems Architecture Development Guidebook
“The Art of Systems Architecting”, Eberhardt Rechtin, Mark W. Maier
DoD Architecture Framework (DoDAF)
DOD Systems Engineering Fundamentals January 2001
Systems Engineering Standards
MIL-STD-499B Military Standard
EIA/IS 632 (1994) and EIA 632 (1998) Standards
ISO/IEC 15228 Standard
IEEE Std 1220 (2005 version)
EIA 731.1 Systems Engineering Capability Model
Journal Papers and Articles about Systems Engineering
Reliability engineering principles for the plant engineer, Troyer, Noria Corporation.