Department of Materials Science and Engineering University of Toronto MSE1023H1F: Special Topics in Materials Science II: Soft Materials and Machines Fall 2020

Contacts:	Instructor	Prof. Hani E. Naguib hani.naguib@utoronto.ca Tel: (416) 978-7054 Office: RS207A (Remote appointment made via email)
	<u>TA</u>	Hao Harvey Shi harvey.shi@mail.utoronto.ca (Remote appointment made via email)
Course title Code Credit	Special Topics in MSE1023H1 F 0.5	Materials Science II: Soft Materials and Machines
References	 and Dynam Verl, A., Sof Bar-Cohen, Fortuna, L., Springer, 20 Elsevier Jou IEEE Sensor SPIE Smart 1 ASME Sma 	rnal of Sensors and Actuators A and B: Physical and Chemical
Calendar description	The future of smart manufacturing will depend on integrating multi-functional materials and devices. Flexible sensors, actuators and energy devices will help as a platform in sharing information as well as multitasking. Interacting smart systems will change how the manufacturing industry operates, enhance automation Internet of Things (IOT), (Industry 4.0). Soft materials are a class of materials characterized by their unique flexible and malleable properties that can be easy to deform and manufacture with distinct multifunctional properties. They can be used in a wide range of applications since they can exceed the current abilities of traditional materials especially in new devices and machines including sensors, actuators, energy devices, wearables and textiles. This course is designed to provide an integrated and complete knowledge to soft materials and machines, which makes a strong foundation for further studies and research on these materials and devices. Topics include structure, processing, properties of soft materials; definition of soft devices and machines; Processing and design; Applications of soft material and machines: Soft Sensors and E-skins, Soft Actuators and Robotics, Flexible Energy Storage, Flexible Energy Harvesting, Wearables and Textiles.	
Locations	Lecture hours	Online, 2 hrs per week

Timetable		I	1
Innetable		Wednesday	
	12:00-14:00	LEC	LEC: Lecture
Grading Scheme	Interim Report	& Presentation	15%
	Final Report & F	Presentation	35%
	Final Exam (Tak	e Home)	50%
Project Guideline	Individual Proje	cts, virtual preser	ntation, and electronic report
Academic Policy	ethical standard in all their pursu General Acaden plagiarism or assignments, p penalty (e.g. su found guilty of serious academ	ds of the Profession wits and activities nic Regulations or any other forn rojects, or labor spension or expu- contributing to	uct themselves in accordance with the highest on of Engineering and evince academic integrity at the university. As such, in accordance with the n Academic Integrity, students are reminded that n of cheating in examinations, term tests, ratory reports is subject to serious academic ulsion from the faculty or university). A student cheating by another student is also subject to utoronto.ca/

Late Penalties

20% penalty for each portion of 24-hour period past the deadline.

Pre-requisite Knowledge

- Materials properties (physical, mechanical, electrical, magnetic, etc.) •
- Materials in manufacturing ٠
- Mechanical behavior of materials

Learning Objectives

- Understand the key practical theory with the operation principles of soft materials, their manufacturing, properties and their applications
- · Address the key challenges and obstacles with manufacturing of different soft materials to devices including sensors, actuators and wearables
- Design and justify appropriate materials for specific applications

Lecture Topics	Subject
Introduction	 Course Administration & Overview Introduction to smart manufacturing Soft materials and machines
Soft Materials	 Polymers and composites Colloids and suspensions Foams, gels, aerogels Granular materials, liquid crystals Biological materials
Advanced Manufacturing	 Design for additive manufacturing Bioprinting Micro- and Nanoscale AM Printed Electronics

Course Schedule & Key dates

Lecture Topics	Subject
Soft Sensors and E-Skins I	- Pressure sensing
	- Force sensing
	- Strain sensing
	- Intrinsic sensors vs. printed sensors
	- Biomedical applications
Soft Sensors and E-Skins II	- Soft substrate materials
	- Sensor testing principles
	- Temperature sensing
	- VOC sensing
	- Soft sensors for industrial processes
Soft Actuators and Robotics I	- Dielectric elastomers
	- Ionic polymer-based actuators
	- Shape memory polymers for actuation
	- Artificial muscles
	- Musculoskeletal robot
	- Nanostructured materials for soft robotics
	- New concepts for distributed actuators
Soft Actuators and Robotics II	- Soft robot control
	- Soft robot dynamics
	- Fibrous materials and textiles for actuators
	- Composites for soft robotics
	- Variable stiffness actuators
Flexible Energy Storage	- Wearable supercapacitors vs. batteries
0, 0	 Design of the nanostructured electrodes
	- Electrochemical characterization
	- Flexibility requirements and testing
	 Energy characterization and applications
	 Materials design principles
Flexible Energy Harvesting	- Overview of energy harvesting principles
	 Piezoelectric energy harvesting
	- Triboelectric energy harvesting
	 Thermoelectric energy harvesting
	 Multimodal flexible energy harvester design
	 Nano- and micro-structuring for energy harvesting
Wearables and Textiles	- Textile-based multifunctional platforms
	 Sensing environmental stimuli
	-
	 Properties and mechanisms for smart textile designs
	- Textile actuators
	 Simulation and modeling for smart textile designs