
MIE 1452: Signal Processing - Fall 2020

1/ Instructors: Professor Moshe Eizenman
Department of Ophthalmology
Toronto, Ontario M5S 3G9
Tel: 416-978-5523
Email: eizenm@ecf.utoronto.ca

Professor Tony Sinclair
Mechanical and Industrial Engineering
Mechanical Building, Room MC415
Toronto, ON  M5S 3G8
Tel:  416-978-6953                   
E-mail: sinclair@mie.utoronto.ca

2/ Lecture Times: Wednesday, 1:00 – 3:00 pm (tentative)

3/ Lecture Location: TBA

1Fall 2020



MIE 1452: Course outline (contd.)

4/ Course Background:

The course is targeted towards senior graduate students who are collecting 
signals in an experimental research program. Signal Processing requires a lot 
of math! Particularly useful background knowledge:

 Good familiarity with complex numbers

 Some familiarity with Fourier series or Fourier transforms

 Familiarity with a mathematical package such as MATLAB

 Good comfort level with statistics

5/ Course Organization:

The course is divided into two main modules: 

a) Analysis of systems (Lectures 1-6)

b) Random signals, Power Spectra, filtering and adaptive systems 
(Lectures 7-13)
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MIE 1452: Course outline (contd.)

6/ Grading Scheme:

Assignments (Lectures 1-6) – 5%

Assignments (Lectures 7-12) – 5%

Midterm (closed book – formula sheet will be provided) – 20% 

Term project – 30%

Final exam (closed book – formula sheet will be provided) – 40%

All relevant course materials will be posted on Quercus
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Lecture Topics

Fall 2020

Lecture No. Date Topics

1 Sept 16 Overview of systems (Biomedical/mechanical), key components, signal characteristics. Continuous 
and discrete-time signals. Frequency content. Linear time-invariant systems. Linear constant-
coefficient differential equations    delta functions. Impulse response. Signal convolution. Definition 
of Fourier Transform.

2 Sept 23 Fourier Transform. Signal convolution and de-convolution in time and frequency domains.   Data 
acquisition systems. Phase plots. Periodic and aperiodic signals; discrete and continuous signals in 
the frequency domain. Examples of DFT, DTFT. Parseval’s theorem. Signal sampling and windowing: 
distortions and strategies. Nyquist theorem. FFT. Optimization of signal acquisition parameters.

3 Sept 30

4 Oct 7

5 Oct 14 Signal Modulation. Selection of signal windowing kernel. Signal scalloping. Introduction to low-pass 
signal filters.

6 Oct 21 Noisy signals. auto-correlation and cross-correlation functions.  signal chirps. analytic signal. 
Applications.

7a Oct 28 Mid –Term (first half of lecture period). It will be based on all lectures delivered by Sinclair up to this 
date (1 hour)

7b Oct 28 Term Projects
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Lecture Topics (contd.)

Fall 2020

Lecture No. Date Topics

8 Nov 4 Random noise, Mean, Variance and Moments, Uniform and Gaussian noise. Binary
detection, Receiver operating Characteristics, Baysian classifier

9 Nov 11 Random  processes, Stochastic processes, Stationarity, Ergodicity, Autocorrelation, Cross 
correlation. Frequency domain representation of Random Processes – Power Spectra, 
Periodogram, Parametric Models of PSD estimation. AR, MA and ARMA models. 

10 Nov 18

11 Nov 25 Z-transform, Digital Filters. FIR, IIR, Weiner filters, Adaptive filters, adaptive line enhancer.  
Examples fetal ECG.

12 Dec 2

13 Dec 9 Kalman Filters, PCA, ICA 

14 Dec 16 Final exam 
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General Reference Materials on Signal Processing

A.V. Oppenheim and A.S. Willsky, Signals and Systems, Prentice Hall, 2nd

edition (1996). ISBN 0-13-814757-4
This text is available from Amazon, and there are a few copies in the 
engineering library.  The first edition of this text is organized slightly 
differently, but has primarily the same material.

A. Papoulis, S.U. Pillai, Probability, Random Variables and Stochastic 
Processes, McGrawHill, 4th Edition. 

Leif Sornmo and Pablo Laguna, Bioelectrical Signal Processing in Cardiac and 
Neurological Applications, Elseveir, Academic Press

M.H. Hayes, Digital Signal Processing, Schaum’s outlines, McGraw Hill, 2nd

edition (2012).   ISBN 978-0-07-163509-7

H. Hsu, Signals and Systems, Schaum’s outlines, McGraw Hill (2011)
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Experimental Laboratory Program

System
• engine
• human body
• vibrating beam

Sensor/transducer
• strain gauge
• thermometer
• stethoscope
• accelerometer

Process
• Filter
• amplifier

window & digitize
Process signal & 
extract features

Display final 
result

stimulus

Analog 
voltage (t)

+
noise + sum

Display

store

Signals and inputs
Systems
Processing units
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Course objectives

• Ultimate course objective is to characterize properties of main 
experimental system, by looking at its response to stimuli.

How?  Look at the system’s response to various stimuli.

… but the response is hard to interpret   

• Our intermediate objective is to select appropriate test stimuli, then 
process the response signal from the system, to extract key features.

• We also look at various methods to display the system output to clarify 
the key points
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First: Some basic properties of signals and systems (ref: Oppenheim)

System
input: x(t) output: y(t)

Linear Time Invariant (LTI) system:
e.g., system is a clamped beam, x(t) is applied force; y(t) is displacement

Definition of linear:
If x1(t) y1(t), and x2(t)  y2(t)

Then: c1x1(t) + c2x2(t)  c1y1(t)  +c2y2(t)

Applied force x(t)

Measured displacement y(t)

Which real systems are truly linear??
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LTI systems – some key ideas (contd.)

1/ Linear systems usually feature small inputs
(almost all systems go non-linear if x(t) is large enough)

2/ Time invariance: Almost all systems have some time variance 
(beam heats up, background noise changes …)

3/ Life is a lot simpler if a system has a unique, linear, time-invariant 
transfer function that links any input x(t) to its output y(t)

4/ If we can figure out what that transfer function is, then we know 
everything that there is to know about our LTI system.

We will assume that our systems are LTI in this course
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Analog vs Discrete-Time Signals

• An analog (continuous-time) signal y(t) is defined for all time t over a finite or 
infinite range. Very often, analog signals are in the form of a voltage v(t). It may 
have some jump discontinuities.

• A discrete-time signal y[n] is defined only at discrete points. It may be naturally
discrete:

• e.g., monthly rainfall in year 2012, for n = 1, 2, …12

• e.g. diameters of the planets in our solar system, n = 1, 2, …9

• Or y[n] may be the result of sampling y(t) at discrete points in time. This will often 
be the case in an experiment. 
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Why digitize a signal?

• By sampling y(t), we can store the result digitally as a vector of length N, where n=1,2,3,4,…N. 
(Be on the lookout for cases where n = 0,1,2,…N, such that you have a vector of length N+1).

• Together with the N data values, you will also need the sampling interval t: y[n]  y[nt]

• Depending on the type of experiment, you may also be interested in the starting time to.

• Digitized signals can be readily stored on a computer, or manipulated to extract features of 
interest.

• A modern oscilloscope can digitize a signal. Oscilloscope specifications of interest are:

• Number of channels
• Bandwidth (Note:  bandwidth is typically specified in terms of 3 dB drop-off)
• Memory buffer size
• Number of bits in each measurement
• Data transfer rate to a computer
• Computational power
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e.g., Digitized (discrete) Cosine Signal

13

(a) y[n] = cos[nt] (in radians),
with t measured in seconds

(b) n = 0, 1, 2, … N-1

(c) N = 64 (N or N+1 data points?)

(d) n can have negative values

(e) y[n] or y[nt] defined at discrete points

(f) cos function takes radians as argument

(h) t = 0.3 seconds

y[nt]  (for t = 0.3 s)

[nt] (s)

-1

0

1

0 10 20
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Time invariant Process “B”

Suppose x[n]  y[n]: x[n]  B     y[n]

Then “B” is time invariant iff:    x[n – no]  y[n - no ]  for any sequence x[n], any no

Similarly, 

Suppose x(t)  y(t)

Then “B” is time invariant iff:            x(t-to) y(t-to) for any x(t), any to

(Often, RLC electrical circuit components are considered to be time invariant, although 
they actually change as they warm up to their normal operating temperature.)
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Periodic signals

x(t)  =  x(t + ),         period = 

(Note that this signal is also periodic with period 2, 3, 4, but we quote only the 
“fundamental” period .)

x[n] = x[n + N],        period N

x[nt] = x[nt + Nt],        period  =Nt (or x[n] = x[n+N] )

e.g.     x(t) = cos(5t) = cos(5(t + 2/5))       periodic signal,    =2/5 (units?)

e.g. x[n]  = 𝑐𝑜𝑠 2𝜋
𝑛

15
= 𝑐𝑜𝑠 2𝜋

𝑛+15

15
 periodic signal, N = 15

How about x[n] = cos(n),  n=0, 1, 2, …?  Why is this not periodic?
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Even and Odd Signals

Even signals:    x(t)  =  x(-t)

e.g.  x(t) = 5 cos(t)

x(t) = |t|

x(t) = 3t2 + 5t4

x[n] = n2

x[n] = |n(t)| + 7 cos(3n(t))

Odd signals:     x(t) = -x(-t)

e.g. x(t) = t + 3t5

x(t) = 6 sin(5t)

x[n] = 4n3 + sin(3n)

Note that most signals are neither even nor odd.

Can any real signal be broken up into a sum of even plus odd signals? (Consider 
Fourier’s theorem)
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Delta function, (t) or [n]

Discrete signals: [n]    =  1, n = 0
0, n  0

Analog signals:  (t)    =  lim
𝑀→∞

𝑀, −
1

2𝑀
< 𝑡 <

1

2𝑀

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

17

n   

   

[n]

(t)

t

1/M

M
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Shifted delta function, (t) or [n]

Discrete signals: [n-4]    = 1, n = 4
0, n  4

Analog signals: (t-4) = lim
𝑀→∞

𝑀, 4 −
1

2𝑀
< 𝑡 < 4 +

1

2𝑀

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

18

n     



(t-4)

4 t

1/M

[n - 4]

M

Fall 2020



Key properties of (t) – analog signals

1/      𝛿 𝑡 𝑑𝑡 =    𝑀 𝑑𝑡 = 𝑀  
1

2𝑀
− 

−1

2𝑀
  =   

𝑀

𝑀
 =   1

1/2𝑀

−1/2𝑀

+∞

−∞
 

 

For any continuous function f(t), defined in the vicinity of t=0,  

 

2/      𝑓 𝑡 𝛿 𝑡 𝑑𝑡 =   𝑓 0 𝑀 𝑑𝑡 = 𝑀 𝑓 0  
1

2𝑀
− 

−1

2𝑀
  =

1/2𝑀

−1/2𝑀

+∞

−∞

                                        = 𝑓 0 
𝑀

𝑀
=  𝑓(0) 

 

3/      𝑓 𝑡 𝛿 𝑡 − 𝑐1 𝑑𝑡
+∞

−∞
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t

f(t)

c1

(t-c1)

= න

−𝑀/2

𝑀/2

𝑓 𝑐1 𝑀 𝑑𝑡 = 𝑓 𝑐1 



Key properties of [n] – discrete signals

Analogous to the case of analog signals, 

 

1/    𝛿 𝑛 = 1𝑛=+∞  
𝑛=−∞  

 

 

2/    𝑥 𝑛 𝛿 𝑛 = 𝑥 0 𝑛=+∞  
𝑛=−∞  

 

 

3/  𝑥 𝑛 𝛿 𝑛 − 7 = 𝑥 7 𝑛=+∞  
𝑛=−∞  
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• 𝐸 =  𝑡1
𝑡2 |𝑥 𝑡 |2𝑑𝑡 ,   or    𝐸 =  𝑛1

𝑛2 |𝑥 𝑛 |2

• 𝐸∞ refers to the limiting values as the time period extends to infinity

• Note that signal energy is also defined for complex signals

• Note that this definition is proportional to our conventional engineering definition 
of energy, but may be missing a multiplication constant. E.g., 

energy consumed in a resistor R  is E =  𝑡1
𝑡2 𝑅|𝑖 𝑡 |2𝑑𝑡

• Power = Energy/time

• Be careful of discrete indexing:  Power  =  
1

𝑛2 − 𝑛1 + 1
 𝑛1

𝑛2 |𝑥 𝑛 |2

Signal Energy
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 




n1 = -5

n2 = 4

x[n]



Unit Step Function = Heaviside Function

• u(t) =  ቊ
0, 𝑡 < 0
1, 𝑡 > 0

(undefined at t = 0, or sometimes defined as u(t) = 1 for t =0)

• u[n] = ቊ
0, 𝑛 < 0
1, 𝑛 ≥ 0

• From the definitions of 𝛿 𝑡 and u(t), 

𝑢 𝑡 = න

−∞

𝑡

𝛿 𝑠 𝑑𝑠 𝑜𝑟 𝛿 𝑡 =
𝑑𝑢 𝑡 

𝑑𝑡

22Fall 2020

t

u(t)
Derivative of u(t) is zero everywhere, 
except at t=0 where the derivative of 
u(t) becomes infinitely large.



Impulse response h(t)

• Consider the case where we input an impulse (t) to a LTI system. The resulting 
output is defined as the impulse response h(t) of the system:

• A real system must be causal, meaning that it can not react to an input signal until 
the input signal has actually happened. (That is, it cannot anticipate what the 
future input signal will be.)

• Therefore, for a causal system, h(t) = 0 for t<0

• E.g. What is the impulse response of a perfect amplifier that multiplies any input 
signal by a factor of 5?

Answer: If the input is (t), then the output will be 5(t),  so

by definition, impulse response h(t) = 5(t)

23

LTI system
(t) h(t)
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More advanced impulse response example

24

Applied input force x(t) = (t)

Measured displacement y(t) = h(t)

LTI system
x(t) = (t) y(t) = h(t)

(t)

t

1/M

M

t

y(t) = h(t)
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Important theorem for LTI systems

Suppose we know the impulse response h(t) for a LTI system. What would be the 
system response y(t) for any arbitrary input x(t)?

25

Answer: We can break up the function x(t) into a bunch of extremely narrow rectangles.      
One of these rectangles, centered at time t = t’, is shown. 

Note: The orange rectangle is very similar to a delta function, with the following two important 
differences:

1) The rectangle is centered at t = t’, while (t) is centered at t=0.
2) The rectangle has an area = x(t’) dt’ , while (t) has an area equal to 1.

t

x(t)

t’

dt’

LTI systemx(t) y(t)
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Important theorem for LTI systems (contd.)

26

Output y(t) due to orange rectangle input:

t

x(t)

t’

dt’

Note 1: If orange rectangle were a delta function, then y(t) would be h(t)
Note 2: If orange rectangle were a delta function time shifted to t = t’, then y(t) 
would be equal to h(t – t’)
Note 3: Orange rectangle is actually a delta function time shifted to t=t’, and 
scaled down to an area of only x(t’) dt’, so y(t) = (x(t’) dt’) h(t – t’)

To get total output, sum the contributions from all of the orange rectangles by 
integrating:

𝑦 𝑡 = න

−∞

+∞

𝑥 𝑡′ ℎ 𝑡 − 𝑡′ 𝑑𝑡′
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Important theorem for LTI systems (contd.)

If we know h(t) for a LTI system, then we know everything about the system. 
Specifically, we can calculate y(t) for any input x(t), if we know the impulse response of 
the system.

Definition:   

27

 −∞
+∞

𝑥 𝑡′ ℎ 𝑡 − 𝑡′ 𝑑𝑡′ is called a convolution integral =    x(t) * h(t)

Note 1: Convolution integral is symmetric:       x(t) * h(t) = h(t) * x(t)

Note 2: The “minus” sign in the convolution integral is important. Don’t omit it!

Note 3: Calculating a convolution integral numerically for a large range of t values is 
computationally expensive

Note 4: Recall that h(t) = 0 for t < 0 if the system is causal.
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Convolution : Discrete System

𝑦 𝑛 = ෍

𝑘=−∞

∞

𝑥 𝑘 ℎ 𝑛 − 𝑘 

Note that h[n-k] = 0 for n < k when dealing with a causal system

e.g., For a perfect amplifier of strength C1 ,       h[n-k] = C1 [n-k]
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A convolution chain

An experiment or process can consist of several LTI systems connected in series:

𝑧 𝑡 = න

−∞

∞

ℎ2 𝑡 − 𝑡′′ 𝑦 𝑡′′ 𝑑𝑡′′

=  −∞
∞

ℎ2 𝑡 − 𝑡′′  −∞
∞

𝑥 𝑡′ ℎ1 𝑡′′ − 𝑡′ 𝑑𝑡′ 𝑑𝑡′′

29

x(t)
System 1 

h1(t)

y(t) System 2 
h2(t)

z(t)

e.g., ℎ1 𝑡 = 𝐾1 cos 𝜔𝑡 + 𝜑 𝑒−𝐾2𝑡

System 2 is a signal processor:  amplifier/filter and time delay

If h1(t) and h2(t) are complicated functions,  and there is a complicated input 
signal x(t), it is going to be computationally expensive to find z(t)

 Try Fourier transforms
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Fourier Transforms
Consider any piece-wise continuous function f(t).

(or possibly with a finite number of discontinuities) 
Monsieur Fourier showed that it can be exactly 
constructed as a sum of sines and cosines of various 
amplitudes and frequencies.

This gives us an alternative way to represent the 
same function:

𝐹 𝜔 = න

−∞

∞

𝑓 𝑡 𝑒−𝑗𝜔𝑡 𝑑𝑡

where  = frequency in radians/s = 2f, and

𝑗 = −1

30

f(t)

t

F() and f(t) therefore represent exactly the same signal, and contain exactly the same information. 
It is analogous to speaking about the same signal but in two different languages.
We say that F() is the frequency domain representation (or Fourier domain representation) of f(t).

For this course, we will assume that the f(t) is always a real function. Note however that F() may be 
a complex function because of the e-jt term in the integral: e-jt = cos(t) – j sin (t)
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Fourier transforms – Some physical insights

Recall that e-jt =  cost – j sint.  If f(t) is real and is an even function, then

𝐹 𝜔 =  −∞
∞

𝑓 𝑡 𝑒−𝑗𝜔𝑡 𝑑𝑡

=  −∞
∞

f(t) cost – j sint 𝑑𝑡

=  −∞
∞

f(t) cost 𝑑𝑡 + −∞
∞

f(t) – j sint 𝑑𝑡

The second integral has an odd integrand, equal to an even function f(t) 

multiplied by a sine wave. Therefore, this integral equals zero.

We are left with only the first integral which is real real. So if f(t) is real and is 

even, then F() is real, and F() = F(-).

Similarly if f(t) is real and odd, then F() is pure imaginary, and F() = F*(-) .

If f(t) is neither even nor odd, then F() is complex (expressed as real & 

imaginary components, or as magnitude and phase.)  

F() = F*(-) if f(t) is real
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 P

x

y



Describe vector as x + jy,     or as length R and phase 

where 𝑅 = 𝑥2 + 𝑦2 , and  = 𝑡𝑎𝑛−1 𝑦

𝑥

Ambiguity: The above diagram shows  = 30o +  2N,   N = ...-2, -2, 0, 1, 2, ...

A problem with complex numbers for signal representation ...

Real Axis

Imaginary Axis

angular position 
(wrapped phase)

t

6
4
2
0
-2



0  

-

angular position 
(unwrapped phase)


