MIE1623: Introduction to Healthcare Engineering

Instructor:	Prof. Dionne Aleman, MC321, aleman@mie.utoronto.ca				
	Prof. Mike Carter, RS311, carter@mie.utoronto.ca				
Teaching Assistant: TBA					
Office hours:	TBA				
Textbook:	none				
Prerequisites:	APS1005 or basic OR background recommended.				
	Students who do not have a background will be required to do some extra reading on some topics available on the website.				
Lectures:	Wednesday 17:10 - 20:00 (tentative)				
First class:	January 6, 2021				

Course description

This course illustrates the use of industrial engineering techniques in the field of healthcare. Common strategic, tactical, and operational decision-making problems arising in healthcare will be approached from an operations research perspective. Unique aspects of healthcare compared to other industries will be discussed. Real-world datasets will be provided to illustrate the complexity of applying standard operations research methods to healthcare.

Course goals

- Learn to recognize healthcare problems that can be solved with OR
- Learn important metrics that must be considered in healthcare
- Learn to balance competing objectives and stakeholders
- Learn how to assess efficiency in healthcare systems

Grading

Assessment	Weight	Date
Homework (5 assignments, 12% each)	60%	See schedule of topics
Project	35%	Wednesday, March 31
Project presentation	5%	Wednesday, March 31

Week	Date	Lecture	Due
1	Jan 6	Intro to course; Facility location and layout	
2	Jan 13	Waitlist management, staffing, forecasting	
3	Jan 20	Health and human resources; System Dynamics	Assignment 1
4	Jan 27	Excel-based DSS	
5	Feb 3	Public Health Policy; Decision Analysis	Assignment 2
6	Feb 10	Surgical, shift and appointment scheduling	
7	Feb 17	READING WEEK	
8	Feb 24	Staffing assignments, queuing theory	Assignment 3
9	Mar 3	Patient flow, supply chain, simulation, related software	
10	Mar 10	Benchmarking	Assignment 4
11	Mar 17	Case mix planning; Goal Programming	
12	Mar 24	Resource management, capacity planning	Assignment 5
13	Mar 31	Project presentations	Project

Schedule of topics: The schedule of topics below is subject to change without notice.