MIE1619: Constraint Programming and Hybrid Optimization

Instructor: J. Christopher Beck
Office: BA8126 (meetings by appointment)
Email: jcb@mie.utoronto.ca Website: g.utoronto.ca

December 11, 2018

Lectures

Wednesday: 9:10 — 12:00, UC255, starting January 9.

Overview

The topic of MIE1619 is the “non-traditional” optimization technique Constraint Programming (CP) and hybrids of CP
with approaches in OR. Heavy emphasis will be placed on similarities and differences between CP and mathematical
programming including the unified framework of search, relaxation, and inference. The primary hybrid approaches
will be based on constraint generation approaches including Logic-based Benders Decomposition and SAT Modulo
Theory.

This is an advanced graduate level course intended for research-stream students. MEng students are not admitted
without special permission from the instructor. The course will be challenging. Students are expected to read material
in preparation for each lecture and, in a few cases, view online lectures.

An objective of this course is to impart skills necessary for an academic career such as paper writing, presentation
skills, and writing peer reviews. The main evaluation will be a project where the student is expected to apply techniques
discussed in the course to their own research interests: you should do something you weren’t already planning to do as
part of your research. A goal of this course is that these projects will be publishable in a peer-reviewed forum.

Evaluation

Component Value Notes
Modeling Assignments (3) 15 5 marks each
Peer Reviews (2) 20 10 marks each
Project 65

Proposal 0

Checkpoint 5

Initial Submission 15

Presentation 15

Final Submission 30
Total 100

Modeling Assignments: Value 15%

One of the goals of this course is to be able to model combinatorial optimization problems in CP. To that end, there are
three modeling assignments that are done in Weeks 2, 3, and 4 as follows:

1. Due Date: Jan 15, midnight via Quercus. Value 5% You are to watch Week 1 of the MOOC “Basic Modeling
for Discrete Optimization™ (Stuckey and Lee, 2017) and complete the Week 1 assignment for the MOOC. See
Quercus site for more details of what you are to hand in.



2. Due Date: Jan 29, midnight via Quercus. Value 5%. Watch Week 2 of the same MOOC (Stuckey and Lee,
2017) and complete the Week 2 assignment. See Quercus site for more details of what you are to hand in.

3. Due Date: Jan 30, in class. Value 5%. At 9:10 AM, pairs of students will be given a problem to model and
solve in the following two hours. In the last hour of lecture, each team will present their problem and solution.

Peer Reviews: Value 20 %

Each student will complete two peer reviews as follows:

1. Due Date: Mar 5, midnight via Quercus. Value 10%. A conference submission will be provided to all
students and they will write a peer review.

2. Due Date: Mar 26, midnight via Quercus. Value 10%. The initial submission of each project will be peer re-
viewed by a least two people: the instructor and a student. The identity of the reviewers is to be kept confidential
but the identity of the author is not (i.e., we are following a single-blind reviewing process not a double-blind
process).

Project: Value 65%

The project is a full research paper. It includes a literature survey and a novel contribution in constraint programming
or hybrid techniques. Such a contribution will probably include empirical work (i.e., computational experiments) but
could also be a mathematical or theoretical contribution. An ideal situation would be for the student to apply the course
material to his/her own research. Failing this, consult with the instructor for project ideas. All topics must be approved
by the instructor.

The project is to be done independently. In special cases, permission may be given to do the project in a pair.
However, a pair project must have a specific design: the same problem will be attacked by at least two different
approaches. The students in the pair must work independently on the approaches. The project has a number of
components:

1. Proposal. Due date: Feb 5, midnight via Quercus. Value: 0%. One-page description of the goal of the project
and the approach or approaches considered. The proposal must be approved by the instructor.

2. Checkpoint. Due date: Feb 26, midnight via Quercus. Value: 5%. The checkpoint contains a bibliography
and preliminary literature review that summarizes the relevant existing work. In addition, the checkpoint should
report the state of the project, any preliminary experiments that have been run, hypotheses that have been formed,
and the plan for the rest of the project.

3. Initial Submission. Due date: Mar 19, midnight via Quercus. Value: 15%. The initial submission is a
complete draft of the paper, equivalent to what you would submit for peer review. Students are encouraged to
continue working on the project after the submission and are expected to make changes to the paper (possibly
including further experimentation, etc.) in response to the peer reviews.

4. Presentation: Due date: Apr 3 & 10, in class. Value: 15%. The projects will be presented in a standard
conference-style presentation. You will have a 25-minute time slot of which 20 minutes will be for the pre-
sentation and 5 minutes for questions. You need to present your work so that the audience understands the
contributions you have made.

5. Final Submission. Due date: Apr 12, midnight via Quercus. Value: 30%. This is the final version of the
paper. Evaluation will be based on the final submission as well as the changes that have been made from the
initial submission (i.e., if you ignore reasonable comments in the reviews, you will lose marks). Marks will be
based on content and writing.

Class Participation

There is no explicit mark for class participation. However, marks for any of the above may be adjusted to account for
lack of participation. Students are expected to actively participate in all lectures by asking and answering questions,
making suggestions, asking for and providing clarification of important concepts. Students are expected to have read
the required readings for each lecture and to have made use of the additional material in areas where they are confused.
The level of participation in the class will be used as a guide to the extent that the students have completed and
understood the readings.



Lateness

All deadlines are strict. Submissions after the deadline will lose 25% per 24-hour period.

Software

There are a variety of free-for-academic-use software for Constraint Programming. You are free to choose and use
whatever tools you want with the following considerations.

1. It must be legal for you to use the software.

2. You must use a CP solver. For your project you may want to also use a MIP solver but the requirements for the
course are that you write CP models and solve them with a CP solver.

3. For the Modeling Bootcamp (see Week 4), you will be paired-up with another student. It is recommended that
you both use the same platform.

4. The MOOC that you will be watching for Week 2 and 4 uses the Minizinc constraint language and IDE. You
may want to take this into consideration in choosing a platform.

Possible choices (not an exhaustive list):
e Minizinc (www.minizinc.org)
e IBM ILOG OPL (on the ECFPC system) and available for download (see IBM Academic Initiative website)
e CPOptimizer (see IBM Academic Initiative website): C++

e Google OR Tools (code.google.com/p/or-tools/): C++, Python (?)

Primary Texts

We will be making substantial use of the following books (available at no cost through the library or online) which will
be supplemented with recent papers as noted below.

e Hooker (2014): J.N. Hooker, Integrated Methods for Optimization.
See http://lib.myilibrary.com.myaccess.library.utoronto.ca/Open.aspx?id=133666

e Dechter (2003): R. Dechter, Constraint Processing.
See http://www.sciencedirect.com.myaccess.library.utoronto.ca/science/book/9781558608900.

e Rossi et al. (2006): F. Rossi, P. van Beek, T. Walsh, The Handbook of Constraint Programming.
See http://www.sciencedirect.com.myaccess.library.utoronto.ca/science/bookseries/15746526/2

e Stuckey and Lee (2017): P. Stuckey, J. Lee, Basic Modeling for Discrete Optimization, Coursera MOOC.
See https://www.coursera.org/learn/basic-modeling/home/welcome.

e Bergman et al. (2016): Bergman, D., A. A. Cire, W. van Hoeve, J. Hooker. 2016. Decision Diagrams for
Optimization.
See https://link-springer-com.myaccess.library.utoronto.ca/book/10.1007%2F978-3-319-42849-9.



Weekly Lectures

Note that this is subject to change. I do not anticipate any major changes (perhaps some changes in the readings),
however for the up-to-date details, you should consult the weekly details document on Quercus.

Week Topics Tasks & Readings
1: Jan 9 Introduction Dechter (2003), Ch 1
2: Jan 16 Search, Inference, and Relaxation Stuckey and Lee (2017) Week 1; Hooker (2014),
Chl,2
Consistency in CP Hooker (2014) Ch 6.1, Dechter (2003) Ch 3
3: Jan 23 Global Constraints Hooker (2014) Ch 6, Sect 7-10; Rossi et al. (2006)
Ch6 & 22
4: Jan 30 Modeling Bootcamp Smith (2006); Stuckey and Lee (2017) Week 2
5: Feb 6 Dynamic Programming, Decision Trick (2003) or van Hoeve et al. (2006); Bergman
Diagrams, and Global Constraints etal. (2016) Ch 1 & 10
6: Feb 13 Search Dechter (2003) Ch 5 Sect 1-3; Hooker (2014) Ch 5
Sect 1.0-1.5
7: Feb 27 OR/CP Hybrids & Peer Reviews Laborie and Rogerie (2016), Achterberg et al.
(2008), Benos et al. (2003)
8: Mar 6 Constraint Generation: Benders Hooker (2014) Ch 2.8, 5.2-5.2.2, Tran et al. (2016)
Decomposition
9: Mar 13 Satisfiability and MaxSAT Hooker (2014) Ch 5.2.4-5, Gomes et al. (2008) up
to end of Ch 2.2.5
10: Mar 20 Constraint Generation: SAT Modulo De Moura and Bjgrner (2011), Schutt et al. (2013)
Theory and Lazy Constraint Generation
11: Mar 27 Large Neighborhood Search Pisinger and Ropke (2010)
12: Apr 3 Project Presentations
13: Apr 10 Project Presentations
References

Achterberg, T., T. Berthold, T. Koch, K. Wolter. 2008. Constraint integer programming: A new approach to integrate
CP and MIP. Proceedings of the Fifth International Conference on the Integration of Al and OR Techniques in
Constraint Programming (CPAIOR0S). 6-20.

Benos, D.J., K.L. Kirk, J.E. Hall. 2003. How to review a paper. Advances in Physiology Education 27(2) 47-52.

Bergman, D., A. A. Cire, W. van Hoeve, J. Hooker. 2016. Decision Diagrams for Optimization. Springer.

De Moura, L., N. Bjgrner. 2011. Satisfiability modulo theories: Introduction and applications. Communications of the
ACM 54(9) 69-717.

Dechter, R. 2003. Constraint Processing. Morgan Kaufmann.

Gomes, C. P, H. Kautz, A. Sabharwal, B. Selman. 2008. Satisfiability solvers. F. van Harmelen, V. Lifschitz, B. Porter,
eds., Handbook of Knowledge Representation. Elsevier B.V., 89-134.

Hooker, J. N. 2014. Integerated Methods for Optimization. 2nd ed. Springer.

Laborie, P., J. Rogerie. 2016. Temporal linear relaxation in IBM ILOG CP Optimizer. JOurnal of Scheduling 19

391—-400.

Pisinger, D., S. Ropke. 2010. Large neighborhood search. M. Gendreau, J.-Y. Potvin, eds., Handbook of Metaheuris-
tics. Springer Science+Business Media, LLC, 399-419.



Rossi, F., P. van Beek, T. Walsh, eds. 2006. Handbook of Constraint Programming. Elsevier.

Schutt, A., T. Feydy, P. J. Stuckey, M. Wallace. 2013. Solving RCPSP/max by lazy clause generation. Journal of
Scheduling 16(3) 273-289.

Smith, B. 2006. Modelling. F. Rossi, P. van Beek, T. Walsh, eds., Handbook of Constraint Programming, chap. 11.
Elsevier, 377—406.

Stuckey, P. J., J. H. M. Lee. 2017. Basic modeling for discrete optimization. Coursera MOOC.
Https://www.coursera.org/learn/basic-modeling/home/welcome.

Tran, T. T., A. Araujo, J. C. Beck. 2016. Decomposition methods for the parallel machine scheduling problem with
setups. INFORMS Journal on Computing 28(1) 83-95.

Trick, M. A. 2003. A dynamic programming approach for consistency and propagation for knapsack constraints.
Annals of Operations Research 118(73-84).

van Hoeve, W.-J., G. Pesant, L.-M. Rousseau, A. Sabharwal. 2006. Revisiting the sequence constraint. F. Benhamou,
ed., Proceedings of the Twelfth International Conference on the Principles and Practice of Constraint Programming
(CP06). 620-634.



