MIE 1744 – Nanomechanics of Materials

Department of Mechanical & Industrial Engineering

School of Graduate Studies, University of Toronto

Instructor: Prof. Tobin Filleter, Office: MB115

1. Lectures: Schedule TBD

2. Marking Scheme:

Final Project Report (Due: TBD) 100%

3. References:

Recommended Textbooks and References:

A.N. Cleland. Foundations of Nanomechanics, Springer (2003) ISBN: 3-540-43661-8

E. Gnecco & E. Meyer. *Fundamentals of Friction and Wear on the Nanoscale,* Springer (2015) ISBN: 978-3319105598

4. Course Description:

Materials can exhibit dramatically altered mechanical properties and physical mechanisms when they have characteristic dimensions that are confined to small length-scales of typically below ~ 100 nm. These size-scale effects in mechanics result from the enhanced role of surfaces and interfaces, defects and material variations, and quantum effects. Nanostructured materials which exhibit these size-scale effects often have extraordinary mechanical properties as compared to their macroscopic counterparts. This course is designed to provide an introduction to nanomechanics and size-scale mechanical phenomena exhibited by nanostructured materials, and provide a platform for future advanced studies in the areas of computational/experimental nanomechanics and nanostructured materials design and application. Topics include: an introduction to nanomechanics; atomic/molecular structure of materials & nanomaterials synthesis; limitations of continuum mechanics, nanomechanical testing techniques (AFM, nanoindentation, in situ SEM/TEM); atomistic modeling techniques (DFT, MD, Course-grained MD); size-scale strength, plasticity, and fracture ; Hall-Petch strengthening, superplasticity; nanotribology, atomistic origins of friction, nanoscale wear; nano-bio-mechanics; mechanics of nanocomposites.

5. Major Course Sections:

- 1. Introduction to Nanomechanics (Lecture 1)
- 2. Atomic/molecular structure of materials & nanostructure synthesis (Lectures 2-3)
 - Review of crystal structure, defects, and dislocations
 - Polymer molecular structure
 - Top down & bottom up synthesis approaches
 - 1D nanomaterials (nanowires & nanotubes)
 - 2D nanomaterials (atomically thin films)
 - 3D nanomaterials (nanograined materials & nanocomposites)
- 3. Limitations of continuum mechanics (Lecture 4)
 - Intra- and intermolecular forces
 - Surface energy and adhesion forces
 - Contact mechanics models and assumptions
- **4.** *Nanomechanical testing techniques* (Lectures 5-6)
 - Atomic Force Microscopy & Friction Force Microscopy
 - Nanoindentation
 - MEMS testing devices
 - In-situ SEM/TEM testing
- 5. Atomistic modeling techniques (Lecture 7)
 - Density Functional theory
 - Molecular Dynamics simulations
 - Course-grained MD simulations
- **6.** *Size-scale strength, plasticity, and fracture* (Lectures 8-9)
 - Hall-Petch strengthening
 - Superplasticity
 - Multiscale fracture modeling
- 7. Nanotribology (Lecture 10)
 - Atomistic origins of friction
 - Single asperity vs multiple asperity contacts
 - Nanoscale wear
 - 3rd body layer
- 8. Nano-bio-mechanics & Nanocomposites (Lectures 11-12)
 - Liquids and wet environments
 - Single cell mechanics
 - Protein unfolding
 - Mechanics of bone and cartilage
 - Interfacial matrix-filler properties