BME 1452: Signal Processing - Fall 2015

A course targeted towards engineering students collecting experimental data in graduate-level research projects.

 1/ Instructors: Professor Moshe Eizenman Institute for Biomaterials & Biomedical Engineering Rosebrugh Building Room 415 Toronto, Ontario M5S 3G9 Tel: 416-978-5523 Email: eizenm@ecf.utoronto.ca

> Professor Tony Sinclair Mechanical and Industrial Engineering Mechanical Building, Room MC415 Toronto, ON M5S 3G8 Tel: 416-978-6953 E-mail: sinclair@mie.utoronto.ca

2/ Lecture Times: Wednesday, 3:00 – 5:00 PM

3/ Lecture Location: MC306 (formerly MC310)

4/ Course Organization: The course will be divided into two main modules:

a) Analysis of systems (Lectures 1-6)b) Random signals, Power Spectra, filtering and adaptive systems (Lectures 7-13).

6/ Grading Scheme:

- a) Assignments 10%
- b) Midterm 20% (Held during first half of lecture 7)
- c) Term project 30%
- d) Final exam -40%

Course web-site: <u>http://www.mie.utoronto.ca/ftp/guest2</u> username: asguest2 password: B8101

No.	Date	Instructor	Reference	Торіс
1	Sept 16	Sinclair	Oppenheim chapters 1,2; Hsu chapters 1,2; Hayes chapter 1.	Overview of systems (Biomedical/mechanical), key components, signal characteristics. Continuous and discrete-time signals. Frequency content. Linear time-invariant systems. Linear constant-coefficient differential equations delta functions. Impulse response. Impulse response. Signal convolution. Definition of Fourier Transform.
2	Sept 23	Sinclair	Oppenheim chap's 3-7, 9, 10. Hayes chap's 2-7; Hsu chap's 3-6	Fourier Transform. Signal convolution and de-convolution in time and frequency domains. Data acquisition systems. Phase plots. Periodic and aperiodic signals; discrete and continuous signals in the frequency domain. Examples of DFT, DTFT. Parseval's theorem. Signal sampling and windowing: distortions and strategies. Nyquist theorem. FFT. Optimization of signal acquisition parameters.
3	Sept 30	Sinclair		
4	Oct 7	Sinclair		
5	Oct 14	Sinclair	Hayes chap's 2-7; Hsu chap's 3-6	Signal Modulation. Selection of signal windowing kernel. Signal scalloping. Introduction to low-pass signal filters.
6	Oct 21	Sinclair	Hayes chap's 2-7; Hsu chap's 3-6	Noisy signals. auto-correlation and cross-correlation functions. signal chirps. analytic signal. Applications.
7a	Oct 28	Sinclair	Hayes chap's 2-7; Hsu chap's 3-6	Mid –Term (first half of lecture period). It will be based only on lectures delivered by Sinclair up to October 21. (1 hour)
7b	Oct 28	Eizenman		Term Projects
8	Nov 4	Eizenman	Papoulis & Pillai Probability, RV and Stochastic Processes	Estimation of Mean, Variance, correlation with finite Observation Time. Examples: Evoked potentials. Random noise, Mean, Variance and Moments, Uniform and Gaussian noise. Signals and Noise, Random processes, Stochastic processes, Stationarity, Ergodicity, Autocorrelation, Cross correlation.
9	Nov 11	Eizenman	Papoulis & Pillai Probability, RV and Stochastic Processes	Frequency domain representation of Random Processes – Power Spectra, Periodogram, Parametric Models of PSD estimation. AR, MA and ARMA models. Examples: ECG
10	Nov 18			
11	Nov 25	Eizenman	Papoulis & Pillai	Z-transform, Digital Filters. FIR, IIR, Weiner filters, Adaptive filters, adaptive line enhancer. Examples fetal ECG.
12	Dec 2			
13	Dec 9	Eizenman	Papoulis & Pillai	Detection and estimation: Binary detection, Bayes Theorem, Minimax Test, Neyman Pearson, Receiver operating Curve. Non-parametric detection: K-nearest neighbor, Discriminant functions.
14	Dec 16			Final exam

7/ Detailed Lecture Schedule and Topics (subject to modification):

8/ Reference Materials:

- A.V. Oppenheim and A.S. Willsky, <u>Signals and Systems</u>, Prentice Hall, 2nd edition (1996). ISBN 0-13-814757-4 This text is available from Amazon, and there are a few copies placed on reserve in the engineering library. The first edition of this text is organized slightly differently, but has primarily the same material.
- 2. A. Papoulis, S.U. Pillai, Probability, **Random Variables and Stochastic Processes**, McGrawHill, 4th Edition.
- 3. Leif Sornmo and Pablo Laguna, **Bioelectrical Signal Processing in Cardiac and Neurological Applications,** Elseveir, Academic Press
- 4. M.H. Hayes, **Digital Signal Processing**, Schaum's outlines, McGraw Hill, 2nd edition (2012). ISBN 978-0-07-163509-7
- 5. H. Hsu, <u>Signals and Systems</u>, Schaum's outlines, McGraw Hill, 2nd edition (2011)