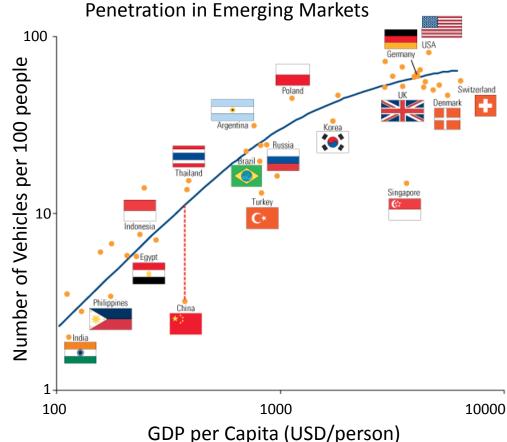

Mechanical & Industrial Engineering Course and Option Talk – **Energy and Environment**

Why Energy & Environment?



Source: EIA, International Energy Outlook 2013

Why Energy & Environment?

WWW. NEWS. CN

Beijing Fog

Catch Up Potential for Motor Vehicle

Energy needs are growing

Need creative solutions

3rd Year Curriculum Overview

FALL

- MIE301: Kinematics and Dynamics of Machines
- MIE312: Fluid Mechanics I
- MIE342: Circuits with Applications to Mechanical Engineering Systems
- MIE258: Engineering Economics and Accounting
- Natural science requirement
 - May consider CIV300 Terrestrial Energy Systems

WINTER

- MIE315: Design for the Environment
- MIE313: Heat and Mass Transfer
- MIE334: Numerical Methods I
- Two stream option courses

4th Year Curriculum Overview

FALL

- MIE491: Capstone Design
- Two stream option courses
- One Technical Elective
- Other: HSS or CS Elective

WINTER

- MIE491: Capstone Design
- Three Technical Elective courses
- Other: HSS or CS Elective

Energy & Environment – Core Courses

3S Term – MIE311 – Thermal Energy Conversion

- Application of thermodynamics to energy systems
- Understand how different energy systems work
 - Examples: Electricity Generation, Transportation, Climate Conditioning

MC120 - Energy Lab

UofT Co-Gen Plant

Energy & Environment – Core Courses

4F Term – MIE515 – Alternative Energy Systems

- Fundamentals of alternative energy sources and technologies that extract that energy
- Course delivered completely online

Examples: Solar, Wind, Tidal, Geothermal, Energy Storage, SmartGrid

www.morgansolar.com

www.hydrostor.ca https://www.youtube.com/watch?v=Gic QwXbNnv0

Notable Technical Electives

Pickering Nuclear

www.opg.com

MIE407/MIE408 - Nuclear Engineering I/II

 Overview of nuclear fission reactions and application in Generation IV nuclear reactors.

MIE516 – Combustion and Fuels

- Fundamentals of combustions theory.
- Design of combustion systems for gaseous, solid and liquid fuels.
- Use of alternative fuels (biofuels, hydrogen, etc.)

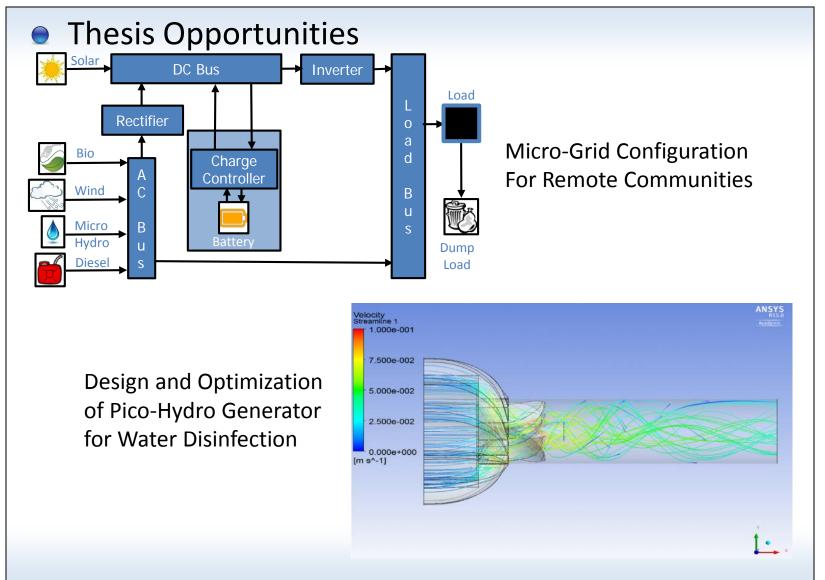
www.hydrogenics.com

MIE517 – Fuel Cell Systems

- Fundamentals of hydrogen and high temperature fuel cells.
- Applications in transportation and stationary power generation.

Energy & Environment – Thesis & Capstone Opportunities

Capstone Projects – Winds of Change



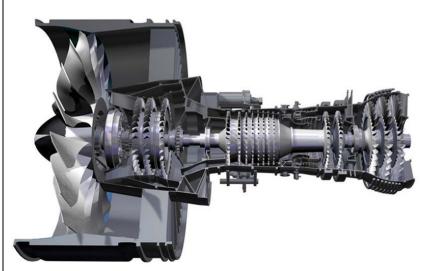
Energy & Environment – Thesis & Capstone Opportunities

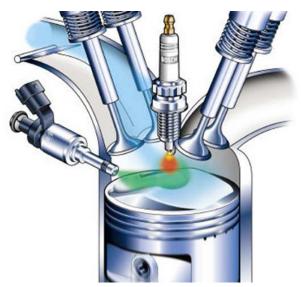
Power Generation

Portlands Energy Centre

- Natural Gas
- Combined-Cycle
- 550 MW (2009)

Sarnia Solar Plant


- Canada's LargestSolar Plant
- 97 MW (2010)


Transportation

Pratt & Whitney

PW1000G Engine

Ford Motor Company

Ford Motor Company Eco-Boost Engine

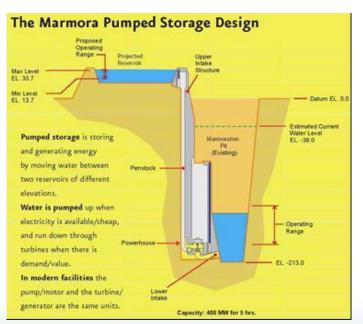
Climate Conditioning


Passive Solar Heating

County Trail House

http://www.solares.ca/County.php?p=Home

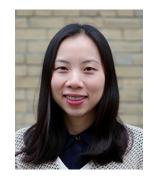
Ground Source Heat Pump



http://www.geo4va.vt.edu/A2/A2.htm

Environmental Impact/Risk Assessment

- Mamora, Ontario
- Former iron ore mine (closed 1979)
- Proposed for pumped hydro storage



http://www.northlandpower.ca/Assets/Document/ProjectDocuments/Marmora%20Pumped%20Storage/Marmora Pumped Storage spread.pdf

UofT – Hub of Energy Research

