MIE1715F: Life Cycle Engineering
Fall 2015
Instructor: Payam Rahimi, PhD, PEng
Email: payam.rahimi@utoronto.ca
Office Hours: by appointment

Teaching Assistant: TBA
Email:
Office: by appointment

Other Consultation Information:
The course instructor is available for individual student consultation in person or by electronic means. A reasonable expectation regarding the amount of time a student should expect to wait for a response to electronic communication is 36 hours.

Lectures: TBA

Course Description:
This course introduces the fundamentals of both product and process engineering with an emphasis on life cycle models. A mixture of practical and theoretical topics, methodologies, principles, and techniques are covered such as life cycle analysis and life cycle engineering [e.g., Design For Assembly (DFA), Design For Manufacturing (DFM), Design For Environment (DFE), etc.]. Students develop an understanding of the performance, cost, quality and environment implications of both product design and manufacture and become capable of translating these into engineering “cradle-to-grave” responsibility requirements, goals, and specifications in order to maximize the values of products and the effectiveness of supply chain management while containing the costs to manufacturer, the user, and the society.

Course Outcomes:
The objective of the Life Cycle Engineering (LCE) course is for students to understand how all they create as engineers affects the environment and how decisions they make can decrease these impacts. Students will complete one LCE based projects, to give the theory some practice. The primary specific learning and training outcomes are:

- To broaden the ideas of students and give them a brief introduction to life cycle engineering.
- To acquire a basic understanding of the concept of life cycles of products and services.
- To acquire both theoretical and practical understanding of parameters within external environment, work environment, resource consumption, and social impacts as key elements in an analysis of the life cycle of products or services systems.
- To become familiar with the application of life cycle assessment as an environment oriented analytical tool/method for decision support in companies or public administration.
- To be able to plan, carry out and evaluate an elementary life cycle assessment.
To become familiar with many different life cycle tools.
To be able to use different life cycle tools.

Delivery Mode and Teaching Method:
The class meets once a week for 150 minutes for lectures. The lectures will consist of a series of topics of general interest in life cycle engineering. Lectures are provided to give guidance for completion of the application project. The students should expect to dedicate 2 to 4 hours per week outside the class to this course. A MID TERM and FINAL EXAM is given in the course.

The online course related communication will be mainly conducted via Blackboard (Portal) by the instructor. A portion of the lecture notes will be made available to students in Microsoft Power Point, Microsoft Word, or Adobe Acrobat formats. Students are responsible for checking Blackboard (Portal) REGULARLY for course information and announcements.

Attendance:
Lecture attendance is not mandatory but is expected. Learning is motivated through active discussion, demonstration, and practices of the topics studied. Even if you are not attending the lectures, you are still responsible to ensure you know what is happening in the class; consult with your fellow classmates before consulting me. Note that some information provided in class may not be available to students who were not in attendance. Missing class is not an excuse for an extension on assignments, as some assignments will be given in class and due at the end of said class.

Preparation:
In order for you to get the most out of this course you are expected to come to class with an open mind and prepared for discussion of the scheduled topic(s). This may include pre-reading the course materials and other suggested reading materials as well as contributing questions and previous experiences to the class dialog. Ask questions as they arise during lectures.

Computer/Software Experience:
Availability and proficiency in using laptop/desktop computers and the use of Blackboard (Portal) in classrooms wired for computer use and internet access, as well as remotely, is assumed. In addition, it is assumed that students are familiar with the use of Microsoft Office, and other programs that they have been exposed to during their course of studies.

Textbook Requirements (Optional):

References:
G. Boothroyd, P. Dewhurst, W. Knight, Product Design for Manufacture and Assembly, CRC Taylor and Francis, Available online and through library.

Course Evaluation:
The course evaluation is made up of one large group project, one individual research paper, one individual presentation, two cumulative knowledge tests and a series of small assignments. Details of the project and research paper are listed below:

1) In-Class Exercises 10%
2) Midterm Test 20%
3) Final Test 40%
 (Note that you must pass the final test in order to pass the course)
4) Group Project 20%
5) Individual Research Paper 10%

Streamlined Life Cycle Assessment (Group Project)
Each student group (number of students per group TBD) completes a streamlined life cycle analysis. Instructor will choose a product/process. Groups will apply life cycle analysis and industrial ecology principles and tools to assess the environmental impact of the product and identify opportunities for improvement. The expected team product will include, but not limited to, a technical report of no less than 15 pages and no more than 30 pages. Each group will present their project results in the last day of the lectures (10 minutes per presentation).

Research Papers
Each student will individually choose one topic to research and write a technical report on. The topic must be related to the field of life cycle engineering. A list of the topics is provided, although students can develop their own questions to answer as well (please discuss your topics with me beforehand). Research papers must have a minimum of 2 journal references, 2 other academic references, and no more than 3 non-academic references. The research papers are to follow standard report format with a minimum of 10 pages and a maximum of 15 pages. Some topic ideas are listed at the end of this outline.

In-Class Exercises
Exercises will be given to supplement students understanding of class materials.

Mid Term and Final Exam
This test is designed to test the students’ cumulative knowledge of life cycle engineering. This had typically been scheduled in class.
Course Topics
1. What is Life Cycle Engineering
2. Streamlined Life Cycle Assessment
3. Life Cycle Design:
 a. Design for Manufacturing
 b. Design for Assembly
 c. Design for Disassembly
 d. Design for Environment
4. Other Topics in LCE:
 a. Golden Rules
 b. Eco Design
 c. Risk Assessment
 d. Energy
 e. Etc.
5. Student Life Cycle Projects
 a. Student LCA

Reports, Assignments and Other Submissions
In-Class exercises will **ONLY** be accepted during the lecture. Late individual research papers will have a penalty of 2/10 for the first day, 5/10 for the second day and 10/10 if hand in later than 2 days. Late group projects will have a penalty of 5/20 for the first day, 10/20 for the second day and 20/20 if hand in later than 2 days. See marking rubrics for more details.

Other Information and Important Notes
- Reports of projects and assignments are to be submitted through Blackboard (Portal) or hand in the class on the specific dates or through direct e-mail to the instructor.
- Ask questions as they arise during the lectures, project, etc.
- Notifications of changes to information in the course outline and this document will only be made after proper consultation and will be announced in class via Blackboard (Portal) prior to being implemented. Deadlines will never move forward but at times, may be moved later to give everyone more time.
- No recycling of work is allowed. It includes work submitted for research papers, an assignment, and group project. This is also part of University of Toronto academic misconduct policy.
- It is responsibility of the groups to ensure that the work submitted conforms to academic conduct requirements. The professor is not responsible to investigate whether individuals within the group or the whole group committed the academic misconduct. It is up to the individual students to prove their innocence otherwise the group will be treated as whole.
- All reports will have an originality statement signed by the individual(s), stating the work is their own, and all work that is not theirs has been properly acknowledged and referenced.
- If student groups exceed the specified number, marks will be proportionally reduced based on the increasing size of the group.
Important Dates

<table>
<thead>
<tr>
<th>Week</th>
<th>Date</th>
<th>Deliverables</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Monday, September 14</td>
<td>Lecture 1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Monday, September 21</td>
<td>Lecture 2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Monday, September 28</td>
<td>Lecture 3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Monday, October 5</td>
<td>Lecture 4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Monday, October 19</td>
<td>Lecture 5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Monday, October 26</td>
<td>Lecture 6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Monday, November 2</td>
<td>Lecture 7 Individual Research Paper</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Monday, November 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Monday, November 9</td>
<td>Mid Term Exam Lecture 8</td>
<td>20</td>
</tr>
<tr>
<td>9</td>
<td>Monday, November 16</td>
<td>Lecture 9</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Monday, November 23</td>
<td>Lecture 10</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Monday, November 30</td>
<td>Lecture 11</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Monday, December 7</td>
<td>Lecture 12</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Monday, December 14</td>
<td>Group Project Presentation</td>
<td>20</td>
</tr>
<tr>
<td>14</td>
<td>TBA</td>
<td>Final Exam</td>
<td>40</td>
</tr>
</tbody>
</table>

Course Content Breakdown (CEAB Categories):
Mathematics: 0%
Basic Science: 0%
Engineering Science: 40%
Engineering Design: 20%
Complementary Studies: 40%
Total: 100%

Note: The instructor is responsible to copy 2 highest marked, 2 intermediate marked, and 2 lowest marked for each of the deliverables and submit these to the department for CEAB purposes.

Academic Integrity and Conduct:
University of Toronto is committed to the fundamental values of preserving academic integrity as defined in policies and contained in the Calendar. Students should familiarize themselves with university’s policies and statements in this area. Acts of academic dishonesty, including plagiarism, cheating, aiding others in cheating, and examination impersonation, will be dealt with severely as they threaten the integrity of the academic system and are not acceptable. For details refer to:

- http://www.mie.utoronto.ca/graduate/info/#medical
Life Cycle Research Paper Topics

1. Greenhouse Gas Emission – Investigate how and how much various industries great greenhouse gases. Your research needs to include information on quantification of GHG and breakdowns on how the GHG is created.

2. Power Generation – Research how power is generated in different OECD countries including Canada. In Canada, determine how much power is generated by region, i.e., the power grid in Ontario is supplied by different fuel sources in Alberta. For other countries, it is acceptable to be general for the country though region specific information is preferred.

4. Economics of Recycling – Recycling has always been seen as being Green. The average person does not realize there is a cost to recycling. Determine the cost (economics, environmental, and social) to recycling various materials, plastics, metals, paper, glass, etc.

5. Carbon Footprint Calculator – Develop your own carbon footprint calculator. Investigate the calculators currently available; determine what factors are important in determining your carbon footprint. The report must include justification on what you are putting in your calculator, instructions to use, and a working calculator.

6. Alternative Energy – Research alternative to generating energy, i.e. alternative to petroleum for vehicles, alternatives to coal for power, etc. Your research, and final report, should indicate the efficiency of the energy source. The cost (economics, environmental, and social) of using alternative versus the traditional source should be taken into account.

7. Hybrid Vehicles – Hybrid vehicles are being hailed as an excellent way to reduce your carbon footprint. Look at popular hybrids and their gasoline counterparts. Determine what the economics payoff, the true reduction in carbon, other benefits and cons found in the research for typical customers could be:
 - For someone who commutes along 401 and city driving for a total of 100 km (75 and 25 km respectively) per day.
 - For someone doing all city driving with a total of 50 km per day.
 - For any other typical driver you are familiar with.

8. Green Taxes – Research taxes in different countries that are aimed at making people greener. Determine which taxes work and which do not, justification is required. What could Canada learn from other countries?

9. DfX is a methodology we learn in class. Do some research to figure out who is actually doing work in this field, what companies use DfX methodologies, how are they using it, what have they gained, what has it cost them, etc.

10. Complete a SLCA individually on a product, process, or service of your choosing. This will be on a smaller scale than the group project.

11. Any project of your choice, which has environmental impacts.