Mechanical & Industrial Engineering Course and Option Talk - **Mechatronics**

Mechatronics - Overview

What is Mechatronics? What will you learn?

- Interdisciplinary Mechanical,
 Electrical, Computer Science
- Design of complete, modern
 mechanical systems which require
 integral electronic components

Examples: Robots, Appliances, Cars,
 Aircraft, Spacecraft, etc...

Third Year — Core Mechatronics-Related

Third Year, Fall Term – MIE342 – Circuits w/ Appl. To Mech

 Teaches basic techniques for analyzing circuits (things like current and voltage laws) and circuit components (such as sources, inductors, capacitors, and op-amps)

Third Year — Core Mechatronics-Related

Third Year, Fall Term – MIE334 – Numerical Methods I

 Teaches MATLAB; review and extension of programming methods from first year – used in many

4th year and graduate courses

Third Year – First Stream Course

Third Year, Winter Term – MIE346 – Analog & Digital Electronics

 Teaches advanced circuits – motor drivers, oscillators, filters, plus new semiconductor devices (diodes, MOSFETs, BJTs), plus real world design and analysis

Fourth Year – Second Stream Course

Fourth Year, Fall Term - MIE404 - Control Systems I

 Teaches general methods to control a feedback system; both mathematical and practical (i.e.: Magnetic Levitation control lab)

Technical Electives – Fall Term

AER525 – Mechatronics Principles (excl. MIE422)

 Math involved with controlling a robot (for./rev. kinematics), and practical project (i.e., build and control a robot arm, etc.)

**MIE444 – Mechatronics Principles

 Eng. Design Course – Smart Systems, Interfacing and Control, Modeling, and a practical project (build a line follower)

ECE344 – Operating-Systems

 Computer and programming; teaches high-level operating-systems concepts, computer organization and mgmt.

Technical Electives – Winter Term

"Classical" Mechatronics Courses

**MIE443 – Mechatronics Systems: Design & Integration

 Design Course – Teaches the design process, automation, and integration of real-world Mechatronics systems

MIE438 – Microprocessors and Embedded Microcontrollers

 Teaches how to use microcontrollers in real-world Mechatronics systems; project focused

Technical Electives – Both Terms

Courses with Mechatronics focus or strong tie-ins

**MIE506 – MEMS Design and Microfabrication

Teaches Microelectromechanical Systems (MEMS)

MIE464 – Smart Materials and Stuctures

Study on electrical, magnetic, and optical smart structures

MIE517 – Fuel Cell Systems

Study on control, charging, and electronics of fuel cells

These are **just a few examples** – many courses have Mechatronics tie ins, **particularly if you initiate**!

Mechatronics – Jobs

"Every mechanical system is waiting to be smarter, and the way to do it is through electronics..."