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Mesenchymal stem cell mechanobiology
and emerging experimental platforms

Luke MacQueen1, Yu Sun1,2 and Craig A. Simmons1,2

1Department of Mechanical and Industrial Engineering, and 2Institute of Biomaterials and
Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada

Experimental control over progenitor cell lineage specification can be

achieved by modulating properties of the cell’s microenvironment. These

include physical properties of the cell adhesion substrate, such as rigidity,

topography and deformation owing to dynamic mechanical forces. Multi-

potent mesenchymal stem cells (MSCs) generate contractile forces to sense

and remodel their extracellular microenvironments and thereby obtain infor-

mation that directs broad aspects of MSC function, including lineage

specification. Various physical factors are important regulators of MSC func-

tion, but improved understanding of MSC mechanobiology requires novel

experimental platforms. Engineers are bridging this gap by developing

tools to control mechanical factors with improved precision and throughput,

thereby enabling biological investigation of mechanics-driven MSC function.

In this review, we introduce MSC mechanobiology and review emerging cell

culture platforms that enable new insights into mechanobiological control of

MSCs. Our main goals are to provide engineers and microtechnology devel-

opers with an up-to-date description of MSC mechanobiology that is

relevant to the design of experimental platforms and to introduce biologists

to these emerging platforms.
1. Introduction
Biological tissues contain populations of variously specialized cells with pheno-

types that are tightly regulated according to their roles in tissue homeostasis.

These include progenitor cells that have potential for self-renewal and multi-

lineage differentiation and play important roles during tissue formation and

repair. Balance between quiescence and activation/specialization of these

cells is maintained by signalling that occurs in the cellular microenvironment,

the collective properties of which are referred to as the cell niche [1]. Several

recent reviews describe particular cell niches, for example in bone [2], bone

marrow [3] and muscle [4]. Current understanding is that multiple microenvir-

onmental cues within and between in vivo niches combine to govern progenitor

cell proliferation, migration and differentiation (i.e. cell ‘fate’), but the mechan-

isms are not fully understood [5]. Systematic study of these mechanisms has

been hampered by the combinatorial nature of multiple non-additive cues

and by limited accessibility of in vivo niches.

Among the microenvironmental stimuli that govern cell fate and function,

mechanical factors have emerged as key determinants. Mechanical factors that

affect cell fate include rigidity and topology of the extracellular matrix (ECM)

or adhesion substrate, deformation of cells and tissues that results from mechan-

ical loading, and shear stresses associated with fluid flow. In load-bearing

connective and cardiovascular tissues, in particular, the beneficial effects of

mechanical loading on the maintenance of healthy tissues are generally accepted

[6]. Connective tissues contain multipotent mesenchymal stromal/stem cells

(MSCs) that have at minimum osteogenic, chondrogenic and adipogenic lineage

potential [7] and play important roles in homeostasis. Similarly, MSC-like cells are

present in blood vessels [8] and heart valves [9] where they probably participate in

tissue renewal, but also can differentiate to ectopic phenotypes that contribute to

disease [10]. Lineage specification of MSCs from multiple sources depends on

substrate rigidity [11,12], cell–substrate adhesion geometry [13–15] and dynamic
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mechanical forces that, for example, promote osteogenesis

at the expense of adipogenesis to mirror tissue-level bone

strengthening and fat suppression with exercise [16,17].

An integrated multiscale approach is required to describe

the mechanisms by which mechanics regulate MSCs and

contribute to tissue-level remodelling and repair.

As with other progenitors, MSC populations are hetero-

geneous, they vary between donors [18], and extended

monolayer culture results in heterogeneous morphologies

associated with various subpopulations [19]. MSC-like cells

are found in increasing numbers of differing tissue sources,

compounding difficulties associated with classification schemes

[20]. The rarity and sensitivity of MSCs to various stimulants

(e.g. mechanical), combined with the minimal accessibility of

in vivo niches motivates the development of ex vivo experimental

platforms that recapitulate key properties of in vivo niches,

screen the effects of multiple factors that regulate cell fate and

address MSC heterogeneity by analysing sufficient numbers

of cells on an individual basis.

In this review, we describe MSC mechanobiology in the

context of lineage specification through mechanical inter-

actions with substrates and ECM materials, and we highlight

emerging ex vivo experimental mechanobiology platforms.

We begin with an introductory-level description of MSC

mechanobiology with a focus on cell-based contractility and

substrate rigidity sensing. We then summarize key experimen-

tal demonstrations of mechanically regulated MSC lineage

specification in two- and three-dimensional culture platforms.

We conclude by describing platforms that mimic in vivo niches

and address MSC heterogeneity.
2. Mechanobiology of mesenchymal stem cells
Cell behaviour results from a delicate interplay of inhibitory

and stimulatory molecular signalling pathways, and the

relationships between interacting molecules must be carefully

delineated to understand their collective influence on cell

fate. Here, we focus on observed MSC fate regulation that

occurs through ECM, integrin and cell cytoskeleton (CSK)

interactions. Cells sense the rigidity of their supporting

substrates by exerting contractile forces through adhesion

complexes that link intracellular structures to the extracellular

environment. Adhesion proteins such as integrins link the

ECM to the force-generating CSK and associated molecular

transduction events/cascades are variously activated based

on binding affinities and stresses that are generated during

contraction [21].

2.1. Focal adhesions and force generation by the
actin cytoskeleton

The integrin adhesome consists of approximately 160 distinct

components that interact with approximately 500 additional

molecules, roughly half of which are binding interactions

[22]. Approximately 20 integrin homologues have been ident-

ified in human cells, each having specific binding affinities

for various types of collagen, fibronectin, laminin, vitronectin

and other ECM proteins [23]. A schematic of the integrin

complex and several related signalling pathways that feature

prominently in MSC mechanobiology is shown in figure 1.

Although greatly simplified, this schematic provides a

context in which the molecules described below are shown
to influence MSC fate through contractility-based mechan-

isms. As with other transmembrane molecules, integrins

can move laterally in the plane of the membrane and often

cluster into specialized complexes known as focal adhesion

sites that assure cell–substrate adhesion and are important

mechanical signalling centres. Focal adhesions are dynamic

structures that bind the ECM, providing physical links to

the cell’s contractile architecture (i.e. the CSK), and assemble

in response to substrate properties such as rigidity and topo-

graphy. Components of typical integrins that are shown in

figure 1a are described in detail in [24,25,28], and a list of

integrin subunits detected in human MSCs is summarized

in Docheva et al. [23]. The mammalian cell CSK contains several

distinct interacting molecular networks that include intermedi-

ate filaments, microtubules and actin-based microfilaments;

the biomechanical roles of each have recently been reviewed

in [29–31], respectively. Actin is a primary component of

contractile structures that include striated muscle tissue in

skeletal muscles, non-striated muscle tissue in smooth muscles

and non-muscle contractile structures called stress fibres that

are found in diverse cell types. Stress fibres are composed of

filamentous F-actin bundles held together by actin-cross-linking

proteins such asa-actinin that are interspersed with non-muscle

myosin and tropomyosin [32]. Each actin bundle typically con-

tains 10–30 filaments and can generate contractile forces on the

order of 100 pN; their rupture force is approximately 370 nN,

approximately 100-fold larger than the typical force exerted

at a cellular adhesion site [31]. Stress fibres terminate on focal

adhesions forming a mechanoresponsive network that trans-

fers forces generated by actin polymerization and myosin

II-dependent contractility to focal adhesion receptor proteins

(e.g. integrins; [22]). Stress fibre contraction is dually regulated

by a Ca2þ-dependent calmodulin/myosin light chain kinase

(MLCK) system and a Ca2þ-independent Ras homology (Rho)-

kinase system through MLC phosphorylation [33]. Stress fibre

and focal adhesion synthesis and organization are regulated to

balance cell-generated forces with ECM mechanical properties

and external forces.

2.2. Molecules linking mesenchymal stem cell
contractility with lineage specification

Drugs that disrupt CSK structures demonstrate that CSK

tension and contractile forces are essential for mechanical

regulation of MSC fate in a variety of contexts. For example,

cytochalasin D is a small molecule that inhibits F-actin

polymerization, blebbistatin inhibits myosin II and Y-27632

inhibits the Rho-associated protein kinase (ROCK). These

drugs reduce CSK contractility and thereby reduce substrate

geometry-directed MSC osteogenesis in favour of adipogenesis

[15]. Inhibition of non-muscle myosin II with blebbistatin

blocked substrate elasticity-directed lineage specification [11],

and an intact actin CSK under tension appears to be necessary

for oscillatory fluid-flow-induced MSC differentiation [34].

These studies suggest that MSC lineage specification by

substrate geometry and elasticity, and fluid-flow-based mech-

anical stimulation share a common dependence on MSC focal

adhesion assembly and CSK contractility.

MSC maturation through specific lineages requires time-

dependent modulation of proliferation, matrix maturation

and in some cases (e.g. during osteogenesis) mineralization

[35], all of which are regulated by MSC–ECM interactions

that involve signalling molecules such as those shown in
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Figure 1. Schematic of the integrin focal adhesion complex and contractile signalling. (a) Molecules that link the extracellular matrix (ECM) with the cell’s internal
cytoskeleton, adapted from [24] with permission from Elsevier and [25] with permission from MacMillan Publishers Ltd (Copyright 2010); (b) a simplified model of
signalling pathways that are implicated in contractility-based mechanosensing and MSC differentiation, after [26] and [27]. TGF-b, transforming growth factor b;
TGF-bR, transforming growth factor b receptor; BMP, bone morphogenetic protein; BMPR, bone morphogenetic protein receptor; Smad, small mothers against deca-
pentaplegic proteins; FAK, focal adhesion kinase; Src, Rous sarcoma oncogene cellular homolog; Rho, Rho guanine nucleotide exchange factors; ROCK, Rho-associated
kinase; Ras, Ras small GTPases; Raf, Raf serine/threonine-protein kinase; MEK, MAPK/Erk kinase; MAPK/ERK, mitogen-activated protein kinases/extracellular signal-regu-
lated kinases; MLCK, myosin light-chain kinase; MLC, myosin light chain; Lrp5, low-density lipoprotein receptor-related protein 5; Fz, frizzled G protein-coupled receptor
protein; Dsh, dishevelled protein; YAP, Yes-associated protein; TAZ, transcriptional coactivator with PDZ-binding motif; Runx2, Runt-related transcription factor 2; PPARg,
peroxisome proliferator-activated receptor g.

rsif.royalsocietypublishing.org
JR

SocInterface
10:20130179

3

 on May 16, 2013rsif.royalsocietypublishing.orgDownloaded from 
figure 1. For example, focal adhesion kinase (FAK) is a

cytoplasmic protein–tyrosine kinase involved in CSK remodel-

ling, formation and disassembly of cell adhesion structures,

and regulation of Rho-family GTPases [36]. When MSCs

were cultured in osteogenic medium on multiple substrates

with differing rigidities, increased ROCK, FAK and extracellu-

lar signal-regulated kinases (ERK) activities were observed on

stiffer matrices (Young’s modulus, E approx. 40 kPa, mimick-

ing pre-calcified bone, compared with E � 7 kPa mimicking

fat) and inhibition of FAK or ROCK decreased the expression

of osteogenic markers [37]. Matrix proteins such as collagen I
and vitronectin support MSC osteogenesis by a process

thought to involve ERKs [38], and the ability to reorganize col-

lagen in three dimensions is an important step in ERK-

mediated osteogenic differentiation [39]. Using blocking anti-

bodies to integrin b1- and anb3-subunits, ECM-induced ERK

activation was inhibited and addition of the mitogen-activated

protein kinase inhibitor PD98059 blocked ERK activation,

serine phosphorylation of the osteogenic transcription factor

Runx2, osteogenic gene expression and calcium deposition,

suggesting that ERK plays an important role in driving ECM-

induced osteogenic differentiation of MSCs [38]. The ability

http://rsif.royalsocietypublishing.org/
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of MSCs to form a mineralized matrix was also diminished in

the presence of antibodies that blocked the integrin subunit b1

[40], and integrin-b1 was localized to the cell surface when

MSCs were cultured on stiff substrates (Young’s modulus,

E � 50–100 kPa) in contrast to cytoplasmic distributions

observed on soft substrates (E � 0.1–1 kPa) [41]. Park et al.
[42] showed that soft matrices (E � 1 kPa) favouring MSC

chondrogenesis in low-serum medium did not significantly

affect Rho activity but inhibited Rho-induced stress fibre

formation and a-actin assembly. They found that MSC spread-

ing, stress fibre density and a-actin assembly into stress fibres

depended on substrate stiffness. Addition of transforming

growth factor b (TGF-b) increased chondrogenic marker

expression and suppressed adipogenic marker expression on

soft substrates. Similarly, Kwon [43] observed high mRNA

levels of chondrogenic markers such as Col2a1, Agc and

Sox9 in MSCs cultured on soft matrices (E � 1 kPa) in the

absence of differentiation supplements, concomitant with

reduced stress fibres compared with MSCs cultured on stiffer

gels (E � 150 kPa).

The results summarized earlier clearly demonstrate

that MSC lineage specification is regulated by focal adhesion

clustering, integrin–ECM interactions and actin/myosin con-

tractility. Further studies are required to assess the relative

importance and potential synergy of Rho and ERK pathways

and their interactions with developmental pathways and

transcriptional regulation. Growing evidence that we discuss

below is beginning to reveal interactions between the focal

adhesion and contractile systems, cell–cell adhesion proteins

(e.g. catenins), soluble factors that control proliferation and

differentiation (e.g. TGF-b class of regulatory proteins), and

transcription factors associated with cell and tissue develop-

ment (e.g. the Yes-associated protein (YAP) and transcriptional

coactivator with PDZ-binding motif (TAZ)).

Cells convert mechanical forces into molecular signals,

and mechanobiology must account for a growing number

of interacting signalling pathways. In figure 1, we included

circled question marks that connect multiple signalling path-

ways where further studies of potential interactions are

particularly relevant to MSC mechanobiology. Here, we

briefly summarize the roles of several key signalling systems:

TGF-b/small mothers against decapentaplegic (smad), YAP/

TAZ and Wnt. The TGF-b class of regulatory proteins act

through the canonical smad signalling pathway and play

key roles in cell and tissue development [44]. TGF-b is var-

iously activated by different integrins [45], and soluble

TGF-b increases integrin expression in MSCs, thereby enhan-

cing attachment to type I collagen, which is part of the ECM

in bone, skin and connective tissues [46]. Chondroinductive

effects of the TGF-b superfamily members are well estab-

lished in MSCs [47], and recent work is beginning to

establish a global role of TGF-b signalling in the regulation

of stem cell fate [48]. Upon activation, several molecules

associated with MSC lineage specification undergo nuclear

translocation where they influence gene transcription. These

include smads, YAP/TAZ and b-catenin of the canonical

Wnt signalling pathway. YAP and TAZ interact with TGF-

b/smad signalling [49–52] and influence MSC differentiation

through BMP2 and Runx2 osteogenic paths [53]. Runx2 is an

essential transcription factor for osteoblast differentiation and

chondrocyte maturation [54]; TAZ binds to Runx2 and to the

transcription factor peroxisome proliferator-activated recep-

tor (PPARg), the relative activation of Runx2 and PPARg
determine MSC osteogenic or adipogenic tendencies and

MSCs depleted of TAZ show increased adipogenesis at the

expense of osteogenesis [53]. Wnt signalling and b-catenin

nuclear translocation regulate MSC proliferation and differen-

tiation [55], interact with TAZ [56] and are increasingly studied

in the context of MSC mechanobiology [57–59]. Downregula-

tion of nuclear b-catenin coincides with the induction of the

adipogenic transcription factors [60], and b-catenin signalling

therefore mediates inhibition of MSC adipogenesis resulting

from applied mechanical strain [58]. Furthermore, fluid flow

weakens N-cadherin association with b-catenin enabling

b-catenin to translocate to the nucleus and initiate gene tran-

scription [34]. MSC lineage specification clearly involves

diverse signalling pathways associated with mechanosensing

and contractility, cell–cell adhesion and development. The

large numbers of potential interactions between components

of signalling pathways that govern MSC mechanobiology

underscore the advantages of experimental platforms that

have a high screening throughput.
3. Emerging experimental platforms for
multipotent mesenchymal stem
cell mechanobiology

Niche properties that regulate cell fate include soluble bio-

chemical factors, ECM biochemistry, substrate mechanics

(e.g. rigidity and topology) and mechanical loading; combina-

torial screening is required to determine their isolated and

combined effects on MSC fate. Many of these cues are dynami-

cally altered by cells, for example through autocrine and

paracrine signalling or by ECM synthesis and remodelling.

Limited access to in vivo tissue microenvironments and the

large number of interacting cues that are present in living sys-

tems motivate the development of physiologically relevant

high-throughput screening (HTS) platforms for MSC mechan-

obiology. HTS platforms that include multi-well culture plates

and associated robotic handling equipment are essential tools

for genetics, combinatorial chemistry and toxicology (drug

screening) [61]. Adapting these platforms for mechanobio-

logy will require increased biomimicry, including fluid flow,

three-dimensional culture and dynamic mechanical loading.

Biological tissues are regularly subjected to a variety of

dynamic mechanical forces that include hydrostatic com-

pression, fluid shear and mechanical bending, tension and

compression, often in combination. A large number of exper-

imental platforms have been developed to study mechanical

modulation of cell and tissue fate [62], but the majority of

these platforms are limited to serial sample testing and therefore

mimic mechanically dynamic physiologies or pathologies at the

expense of experimental throughput. Because cells and tissues

experience a wide variety of mechanical forces that interact

with non-mechanical (e.g. biochemical) factors, low experimen-

tal throughput hampers systematic mechanobiology research.

To achieve HTS, emerging experimental platforms are typically

miniaturized [63–65] and fabricated using soft lithography

to handle aqueous solutions in microfluidic channels [66].

Advantages of these microfabricated ‘laboratory-on-a-chip’

platforms include reduced footprint and increased experimen-

tal throughput, reduced cost and increased automation. These

advantages are clearly important for mechanobiology exper-

iments that aim to decouple the effects of multiple interacting

http://rsif.royalsocietypublishing.org/
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lineages and associated substrate elasticity values that enhance MSC lineage specification. MSC differentiation towards particular lineages is enhanced by substrates with
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stimulants such as cell sources, ECM properties, soluble factors

and mechanical forces.

In figure 2a, we show several transcription factors that are

required to direct MSC lineage specification and we include a

substrate elasticity scale bar to indicate elasticity values that

are associated with substrate elasticity-directed MSC lineage

specification [11]. Cell culture substrate properties are excel-

lent experimental variables that provide key insights into

MSC mechanobiology. Historically, these have been achieved

by varying substrate elasticity [69–71] or adhesive properties

that direct cell shape (figure 2b) [13,15,72]; both methods are

well suited for miniaturized array-based HTS platforms.

Dynamic mechanical loading (figure 2c) is often more chal-

lenging to implement than mechanically static cultures but

is nevertheless increasingly represented in microfabricated

platforms [59,73–76].

Here, we describe recent MSC mechanobiology research

enabled by emerging experimental platforms (broadly summar-

ized in table 1). We highlight methods that are used to: (i) screen

the effects of two-dimensional culture substrate properties on

MSC lineage specification; (ii) measure cell-generated traction

forces and MSC lineage specification in three-dimensional
cultures; (iii) apply dynamic mechanical forces to cultured

cells; (iv) increase biomimicry in cell and tissue culture plat-

forms; and (v) address issues of MSC heterogeneity via single

cell manipulation and characterization.
3.1. Mechanobiology in two dimensions
In monolayer (two-dimensional) cultures, MSC adhesion is

limited to the cell–substrate contact area, which increases

on rigid substrates concomitant with increased focal adhesion

density, actin stress fibres and MSC flattening [42]. Flat or

rounded MSC morphologies are associated with osteogenesis

or adipogenesis, respectively [13], similar to observations

resulting from substrate rigidity variation [11]. To increase

experimental throughput and permit combinatorial testing

of substrate properties, various geometries, rigidities and bio-

chemical compositions are patterned in high-density arrays

using methods such as blotting and microcontact- or

screen-printing [13,72,77,78]. By patterning individual ECM

components on hydrogel substrates, ECM biochemistry and

substrate rigidity interact to guide MSC lineage specifica-

tion [79]. Substrate-directed MSC lineage specification was

http://rsif.royalsocietypublishing.org/


Table 1. Summary of mechanobiology platform capabilities. 2D, two-dimensional; 3D, three-dimensional.

methods applications advantages disadvantages

2D protein

patterning

cell – matrix interactions, focal

adhesion assembly

ease of use and

visualization, high

experimental

throughput

2D systems may not accurately represent cell

behaviour in 3D

2D substrate

elasticity

cell – substrate mechanical

interactions, stem cell lineage

specification

ease of use and

visualization, high

experimental

throughput

2D systems may not accurately represent cell

behaviour in 3D, additional substrate properties

(e.g. biochemistry, porosity) can confound

interpretation

2D substrate

topography

contact guidance, stem cell lineage

specification, maintenance of

stem cell quiescence

ease of use and

visualization, high

experimental

throughput

2D systems may not accurately represent cell

behaviour in 3D

3D hydrogel

cultures

cell – matrix interactions, ECM

remodelling, stem cell lineage

specification, tissue engineering

model in vivo tissues

with increasing

accuracy

need to isolate effects of multiple hydrogel

properties (e.g. stiffness, degradability,

biochemistry, etc.), limited solute diffusion

restricts gel size and porosity

mechanically

dynamic culture

platforms

cell responses to mechanical loading model in vivo tissues

with increasing

accuracy

increased platform complexity, decreased

visualization

organ on chip

platforms

co-culture, pharmacological

screening, cell responses to fluid

shear stresses and mechanical

loading

model in vivo tissues

with increasing

accuracy

increased platform complexity, decreased

visualization, reduced experimental throughput,

multiple interacting factors directing cell fate
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dramatically demonstrated by patterning substrates with

adhesive ‘islands’ that limited cell adhesion areas and there-

fore governed cell morphology and CSK tension [13,15,80,81].

MSCs that were seeded on large islands became flat and

osteogenic, whereas they became rounded and adipogenic

on smaller islands (figure 3a) [13].

Patterned ECM proteins were also used in recent work to

reveal that cells read ECM rigidity, cell shape and cytoskeletal

forces as levels of YAP/TAZ activity and that YAP/TAZ func-

tion as nuclear relays of ECM mechanics [82]. As shown in

figure 3b, YAP/TAZ was localized in the nucleus when

MSCs were allowed to spread out and flatten on large fibronec-

tin islands but was predominantly cytoplasmic in rounded

MSCs that were cultured on smaller islands. MSC osteogenic

induction was inhibited upon depletion of YAP and TAZ,

and overexpression of activated 5SA-YAP rescued osteogenesis

of MSCs treated with the Rho inhibitor C3 or plated on

soft ECM. Rho and the actin cytoskeleton were required to

maintain nuclear YAP/TAZ in MSCs and inhibition of

ROCK and non-muscle myosin confirmed that cytoskeletal

tension was required for YAP/TAZ nuclear localization. In

the same work, cells that were cultured on micropatterned

fibronectin-coated micropillars were observed to stretch from

one micropillar to another and assume a projected cell area

comparable to cells plated on large area fibronectin islands

although the actual area available for cell–ECM interaction

was only about 10 per cent of their projected area; YAP/TAZ
remained nuclear on micropillars indicating that YAP/TAZ

was primarily regulated by cell spreading rather than by the

apparent substrate elasticity. Spreading entails Rho and/or

ERK regulated stress fibre assembly and cells on stiff ECM or

big islands typically have more prominent stress fibres com-

pared with those plated on soft ECM or small islands.

Geometrically defined cell shape therefore leads to specific

stress fibre arrangements that modulate MSC lineage specifica-

tion through mechanisms that include YAP/TAZ-mediated

transcriptional regulation.

MSC spreading dynamics and differentiation were recently

shown to depend on anchorage site density by Trappmann

et al. [83]. They observed differing MSC responses to col-

lagen-coated PDMS or polyacrylamide (PAAm) substrates

that ruled out bulk stiffness as the differentiation stimulus.

As shown in figure 3c, MSC spreading and differentiation

were unaffected by PDMS stiffness but were regulated by the

elastic modulus of PAAm. PAAm pore size was inversely cor-

related with stiffness and led to differences in anchoring

densities, suggesting that cells cultured on substrates coated

with covalently attached collagen respond to the mechanical

feedback of the collagen anchored to the substrate. These

studies reinforce the fact that cell–substrate biochemical inter-

actions must be carefully considered in addition to the

substrate’s bulk material properties. To generate microscale,

sparse, multicomponent biochemical surface patterns, Desai

et al. [72] developed a technique based on cyclic inking and
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patterned de-inking of a PDMS stamp. They formed multiple

adhesive ligands in spatially organized patterns to investigate

the coordinated activity of various integrin subunits that

guided cell adhesion and migration. For example, they

observed colocalization of avb5 integrin to vitronectin and b1

integrin to collagen type I (figure 3d) and determined that

‘cells can assemble a composite picture from distinct ECMs

whose ensemble pattern conveys directional information

even though the individual patterns do not convey directional

information’ (p. 564 of ref. [72]). By probing interactions

between specific cell adhesion and ECM molecules, these

methods will help dissect pathways mediating cell adhesion

and further studies using MSCs will reveal the roles of these

pathways in mediating lineage specification.
Cell shape and MSC lineage specification are strongly

influenced by their substrate’s physical topographies (e.g.

via the presence of grooves, steps, pits, etc.) [84–88]. In the

1940s, Weiss [89] introduced the term ‘contact guidance’ to

describe substrate topography-directed cell orientation, align-

ment and migration. Weiss noted, if substrates contained

multiple intersecting guide structures, that specific matching

between the cells and their guide structures gave rise to

‘selective contact guidance’ (p. 241 of ref. [89]) and postulated

that ‘its most plausible explanation would be that temporary

linkages are formed between specific molecular groups in the

cell surface and complementary groups in the guide

structure’ (p. 241 of ref. [89]). Isolating the effects of topogra-

phical or chemical cues was a persistent challenge in early
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contact guidance experiments [90], motivating the develop-

ment of substrates with precisely controlled features.

Microfabrication techniques were subsequently used to

make features such as steps [91] and grooves [92], including

ultrafine (submicrometre) features [93,94]. For further histori-

cal context, the reader is referred to the book chapter by

Curtis et al. [95].

As shown in figure 3e, Dalby et al. [84] demonstrated that

MSC osteospecific differentiation was possible using nanodis-

placed topographies in the absence of soluble osteogenic

stimuli. On planar control and ordered nanopatterned

materials, MSCs developed a fibroblastic appearance with a

highly elongated and aligned morphology, whereas MSCs

on substrates with random (disordered) nanotopographies

had a more typical, polygonal, osteoblastic morphology,

although with negligible osteopontin (OPN) or osteocalcin

(OCN). MSCs cultured on substrates with controlled nano-

topographical disorder (e.g. the DSQ50 substrate described

in Dalby et al. [84]) showed discrete areas of intense cell

aggregation and early nodule formation with positive OPN

and OCN staining (figure 3e, row 4). Topographical modu-

lation of cell morphology is transferred via the CSK to the

nucleus and alters chromosomal positioning and gene regu-

lation [87] and nanotopographies produced a more subtle

and specific mode of action than dexamethasone (a commonly

used osteoinductive steroid), targeting a small number of cano-

nical pathways (actin, integrin, p38 MAPK and ERK) [96]. In

related studies, culture substrates that had nanoscale features

with square lattice symmetry (figure 3e, row 2) prolonged

retention of MSC markers and multipotency [88]. Inhibition

studies for actin/myosin contraction supported the hypothesis

that CSK tension is required in MSC retention of multipotency.

The authors noted that MSCs have a direct form–function

relationship and speculated that a surface needs to influence

the adhesion/tension balance to permit self-renewal or tar-

geted differentiation.
3.2. Mechanobiology in three dimensions
In tissues, cells are embedded in three-dimensional mechanically

dynamic environments that are known to support cell morpho-

logies that differ from monolayer cultures [97–99]. Although

two-dimensional or quasi-two-dimensional (e.g. micropillars)

platforms provide dramatic evidence of mechanically regulated

cell fate and key insights into MSC mechanobiology, extending

these studies to three-dimensional environments that more

accurately recapitulate in vivo conditions is a recognized goal

for future work [100]. Cells ‘feel’ in three dimensions [101]

and exert dynamic three-dimensional traction forces on com-

pliant substrates during locomotion (figure 4a) [102,103] and

invasion [107]. In three-dimensional matrices, integrin–ECM

bond densities depend on matrix elasticity [104] and cell-based

ECM remodelling alters niche properties that feedback to influ-

ence cell fate. ECM mechanical properties that are measured

macroscopically (e.g. elasticity) may therefore not accurately

represent conditions seen locally by cells.

Early studies noted that contraction of disc-shaped hydrated

collagen lattices by fibroblasts reduced the disc radius by a factor

of approximately 5 within one week following cell-seeding, gel

contraction rate depended on cell density, and contraction was

blocked by addition of CSK inhibitors cytochalasin B and colce-

mid [108]. Under appropriate culture conditions, MSCs share

several properties with fibroblastic cells that include the
expression of specific matrix proteins and myofibroblastic mar-

kers, notably a-smooth muscle actin (a-SMA) [109]. These

cytoskeletal features enable remodelling and contracture of the

ECM, permit adaption of cells to changes in their mechanical

microenvironments, and are therefore common to ‘mechanically

active’ cell types [110]. ECM contractions represent a type of con-

densation that results in increased cell density, cell–cell contacts,

and inter-cellular paracrine signalling, and is known to occur in

development, for example during early chondrogenesis [111].

Synthetic scaffolds that have differing cross-link densities

result in differing resistance to cell-mediated contraction and

altered MSC chondrogenesis and biosynthesis [112]. Investi-

gations into the relative importance of cell–cell contacts,

paracrine signalling and altered cell–matrix interactions

during condensation are ongoing [113].

The extent to which MSC morphology depends on scaffold

dimensionality independently of the substrate’s mechanical

and biochemical properties is not fully understood. For

example, MSC osteogenesis in three-dimensional alginate

polymers occurred predominantly at 11–30 kPa (similar to

two dimensions) but MSCs remained roughly spherical in

three dimensions, independent of matrix elasticity (figure 4b)

[104] in contrast to the two-dimensional case [11]. Instead,

cell traction forces were observed to reorganize matrix ligand

presentations and therefore alter integrin-matrix binding. Integ-

rin–ECM bonds therefore acted as morphology-independent

sensors of matrix elasticity and dimensionality. In the same

studies [104], a functional contractile CSK was required for elas-

ticity sensing and cells responded to matrix elasticity within a

limited range where contractile forces were functionally rel-

evant: on very compliant substrates, cells did not assemble the

CSK-associated adhesion complexes required to exert signifi-

cant traction forces, whereas on very rigid substrates, the cells

did not generate enough force to deform the matrix.

Measurement of forces exerted by cells in three dimensions

has been hampered by the relatively limited accessibility of

three-dimensional environments to observation compared

with planar substrates. Significant progress towards this goal

was recently demonstrated by Legant et al. [107], who used

bead tracking methods to measure traction forces exerted

by individual fibroblasts and MSCs that were embedded in

soft three-dimensional hydrogels (Young’s moduli, E � 0.6–

1.0 kPa) and cultured for 72 h. The cells exerted 0.1–5 kPa trac-

tions with strong forces located predominantly near the tips of

long slender extensions that occurred during the invasive pro-

cess. Stronger traction forces generated by cells that were

encapsulated in hydrogels with higher Young’s moduli revealed

nonlinear reinforcement of cellular contractility in response to

substrate rigidity and suggested that such (invasive extensile)

regions may be hubs for force-mediated mechanotransduction

in three-dimensional settings. The observed MSC branching

morphologies seemed to differ from the roughly spherical

morphologies of clonally derived murine MSCs observed by

Huebsch et al. [104]. These morphological differences likely

resulted from differing gel properties. The gels used by Legant

et al. [107] were exceedingly soft and proteolytically degradable

in contrast to those used by Huebsch et al. [104], which were sig-

nificantlystiffer (E � 2.5–110 kPa). This hypothesis is supported

by recent work by Khetan et al. [105] demonstrating that hMSC

differentiation is directed by degradation-mediated cellular trac-

tion, independently of cell morphology or matrix mechanics in

covalently cross-linked hyaluronic acid (HA) hydrogels. When

hMSCs were cultured in a bipotential adipogenic/osteogenic
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media formulation, hydrogels of equivalent elastic moduli that

permitted (restricted) cell-mediated degradation exhibited high

(low) degrees of cell spreading and high (low) tractions, and

favoured osteogenesis (adipogenesis). In the same work, photo-

polymerized RGD-modified methacrylated hyaluronic acid

(MeHA) hydrogels were used to provide similar initial elastic

moduli for formulations either permissive (-UV) or inhibitory

(D0 UV) to cell-mediated degradation. Switching the permissive

hydrogel to a restrictive state through delayed secondary cross-

linking reduced further hydrogel degradation, suppressed

traction and caused a switch from osteogenesis to adipogenesis

in the absence of changes to the extended cellular morphology.

As shown in the bottom panels of figure 3c, introduction of

non-degradable cross-links mediated a switch from primarily

osteogenesis to adipogenesis similar to direct pharmacological

inhibition of myosin activity by Y-27632 treatment. In a separate

report, Guvendiren & Burdick [106] described an MeHA hydro-

gel platform that enabled temporal matrix stiffening in the

presence of cells to investigate short- (hours) and long-term

(days to weeks) cell response to dynamic stiffening. Initial

gelation was obtained via an addition reaction and the

gel was stiffened by secondary cross-linking through a light-

mediated radical polymerization. Their results showed that

hMSC spreading and traction forces were correlated and

that hMSC differentiation into mixed populations depended

on how long they were cultured on a substrate of a specific stiff-

ness (figure 3d). MSC fate is therefore regulated by cell-generated

tension that is enabled through cell-mediated degradation of

covalently cross-linked matrices. The work summarized earlier

emphasizes that the mechanisms by which stem cells respond

to biophysical cues are highly dependent on the type of hydrogel

used. These and other studies [114–116] demonstrate that photo-

active gel systems are effective platforms to study MSC-based

matrix degradation and differentiation.

Emerging experimental platforms for stem cell mechano-

biology also must account for ECM stiffness gradients [117],

nonlinear strain-stiffening [118], soluble growth factors that

can be trapped in the ECM and released during controlled

scaffold degradation [119], and dynamic mechanical loading.

Fluid flow patterns and solute diffusion kinetics differ in

three-dimensional hydrogels or ECM scaffolds compared

with those seen in two-dimensional (monolayer) geometries

and they show a strong dependence on mechanical loading

conditions [120]. In these environments, the effects of mech-

anical loading can appear contradictory owing to the

diversity of loading protocols [121], desensitization of cells

to long-term strains [122] and incomplete understanding

of underlying mechanisms (e.g. relative contributions of

mechanical versus fluid-based strains). In microfabricated

platforms, cell assemblies and tissue constructs can be pat-

terned in microwell arrays that control the size and shape

of three-dimensional samples to study MSC lineage specifica-

tion [123], improve solute delivery [124] or measure tissue

contractility [125]. Continued development of these platforms

will help decouple the effects of interacting mechanical and

biochemical factors that direct MSC fate.
3.3. Dynamic mechanical loading
Dynamic mechanical strains that are present throughout all

stages of development in living tissues modulate a variety of

cellular functions that include matrix synthesis by chondrocytes

[126–128] and MSCs [129], matrix mineralization by osteogenic
MSCs [130] and altered solute transport kinetics [120]. The

acknowledged roles that dynamic mechanical forces play in

the growth and maintenance of functional connective tissues

suggests they are needed for full differentiation and committal

of MSCs within mature tissues [121]. Furthermore, Arnsdorf

et al. [34] demonstrated that mechanical stimulation (via oscil-

latory fluid flow) can induce epigenetic changes that control

osteogenic cell fate and can be passed to daughter cells,

suggesting that ‘downstream’ effects of mechanical loading

persist long after forces are applied.

Cyclic mechanical strain applied to cultured MSCs induces

endogenous synthesis of potent growth factors that regulate

lineage specification [122,131]. For example, MSCs that were

seeded on collagen-coated silicone substrates and exposed to

cyclic tensile mechanical strain (2.5% strain at a rate of

0.17 Hz) showed approximately fivefold increase in BMP2

levels after 14 days of stimulation, which was mediated by

ERK and PI3-kinase pathways and represents an autocrine

osteogenic growth factor response to uniaxial strain [122].

Similarly, cyclic compressive loading can promote chondro-

genesis of rabbit MSCs by inducing TGF-b1 synthesis [131].

In other studies, cyclic mechanical stretching (3% elongation

at 0.1 Hz) promoted osteogenic differentiation of MSCs on

substrates coated with various ECM proteins in the absence

of osteogenic supplements [132]; this was mediated by FAK

phosphorylation, upregulation of the transcription and phos-

phorylation of Runx2, and subsequent increases of alkaline

phosphatase activity and mineralized matrix deposition.

To study the effects of dynamic mechanical loading on

MSCs in microfabricated HTS platforms requires mechanical

loading methods that are readily microfabricated in arrayed

formats. Deformable elastomeric membranes are proving

useful for this purpose [59,73,74,133,134] (figure 5). As

shown in figure 5a, pressure supplied through dedicated

channel networks deforms overlying elastomeric structures

and thereby transfers mechanical loads to samples for cell

stretching [59,74] or compression of arrayed biomaterials

(figure 5b) [73]. Standard soft-lithography methods are used

to produce membrane arrays that simultaneously apply a

range of strains (figure 5c) that can be measured in situ
using integrated elastomeric strain sensors (figure 5d ).

Moraes et al. [59] developed a microfabricated membrane

array capable of simultaneously applying cyclic equibiaxial

substrate strains ranging in magnitude from 2 to 15 per

cent to small populations of adherent cells. Using this plat-

form, they identified a novel co-dependence between strain

magnitude and duration and b-catenin nuclear accumulation.

In related work, Moraes et al. [73] developed a platform for

compression of arrayed biomaterials in which compressive

strains ranging from 6 to 26 per cent were simultaneously

applied across the biomaterial array, demonstrating that

nuclear and cellular deformation of PEG-encapsulated mouse

MSCs (C3H10T1/2) were nonlinearly related. Such platforms

undoubtedly have broad applicability to mechanobiology

and may provide insights into the largely unknown roles of

mechano-chemical cycles in directing cell fate [135].
3.4. Vivo in vitro: model physiologies
Appreciation for the sensitivity of cells to mechanical and bio-

chemical properties of their extracellular microenvironments

has clarified the limitations of traditional cell culture plat-

forms and highlighted the need for new platforms with
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increased physiological relevance [136–138]. Emerging culture

platforms combine mechanical loading and fluid flow in three-

dimensional microenvironments to produce functional tissue

arrays that recapitulate key aspects of physiological and

pathological conditions in vitro (figure 6).

Dynamic mechanical loading is essential to study organ-

level responses in pulmonary inflammation and infection, for

example using a microfabricated ‘lung-on-a-chip’ (figure 6a)

[75]; cyclic mechanical strain accentuates toxic and inflam-

matory responses of the lung and enhances epithelial and

endothelial uptake of silica nanoparticles. Physiological breath-

ing movements simulated by cyclic strain (10% at 0.2 Hz)

augmented endothelial expression of intercellular adhesion

molecule 1 (ICAM-1) induced by silica nanoparticles and this

effect was sufficient to induce endothelial capture of circulating

neutrophils, promote their transmigration across the tissue–

tissue interface, and promote their accumulation on the

epithelial surface. The lung-on-a-chip illustrates that multiple

cell types (co-cultures) interact to produce observed organ-

level physiological or pathological responses to biochemical

and/or mechanical stimulants. In another study, Jang et al.
[139] mimicked the kidney collecting duct system using

microfabricated tubular environments for primary rat inner

medullary collecting duct (IMCD) cells (figure 6b). They

observed that fluidic shear stress of 0.1 Pa for the time

period of 5 h enhanced IMCD polarization and CSK and cell

junction rearrangement.
Mechanical cues are used in combination with electrical and

biochemical stimulation to study cardiovascular constructs in

organ-on-a-chip microdevices [76,140]. For example, neonatal

rat cardiomyocytes that were cultivated on micro-grooved

substrates for 7 days were elongated and aligned along the

microgrooves forming a well-developed contractile apparatus,

as evidenced by sarcomeric a-actinin staining (figure 6c) [140].

Simultaneous application of biphasic electrical pulses and topo-

graphical cues resulted in gap junctions that were confined to the

cell–cell end junctions rather than to the punctate distribution

found in neonatal cells, and electrical field stimulation further

enhanced cardiomyocyte elongation when microgrooves were

oriented parallel to the electric field. In another ‘heart-on-a-

chip’ platform (figure 6d) [76], biohybrid constructs of an engin-

eered, anisotropic ventricular myocardium were cultured on

elastomeric thin films to measure contractility, action potential

propagation and cytoskeletal architecture. The authors pre-

sented techniques for real-time data collection and analysis

during pharmacological intervention and emphasized the plat-

form’s use as an efficient means of measuring structure–

function relationships in constructs that replicate the hierarchical

tissue architectures of laminar cardiac muscle.

Organ-on-a-chip platforms enable experimental mechan-

obiology with increased physiological and pathological

relevance. Ambitious ongoing efforts aim to study inter-

actions between multiple organ constructs in ‘human-on-a-

chip’ platforms [141]. These platforms will supplement
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animal studies, for example in toxicology studies, by provid-

ing testing environments that are assembled using a patient’s

own cells.

3.5. Mesenchymal stem cell heterogeneity and single
cell handling

Heterogeneity within cell populations is a confounding pro-

blem that has largely been ignored in mechanobiology to

date. Emerging tools can be adopted to study heterogeneous

cell responses and to distinguish between heterogeneous charac-

teristics that are either intrinsic to a particular cell type or result

from various culture conditions (e.g. from extended in vitro
culture). In this review, we used ‘MSC’ in reference to bone-

marrow-derived progenitors that have well-known osteo-,

chondro- and adipogenic (trilineage) potential. However, bone

marrow contains other progenitors (e.g. haematopoietic progeni-

tors) and typical MSC populations contain a variety of subtly

differing cells that have various growth rates, morphologies

and phenotypes [18,23,109]. Furthermore, MSC-like cells are

discovered in increasing numbers of tissues and the isolation of

a ‘pure’ population of multipotent marrow stromal stem cells

remains elusive and is likely a misnomer: indentifying a
‘phenotypic fingerprint’ has been likened to shooting at a

moving target [109] owing to the dynamic nature of cells such

as MSCs and ‘true’ plasticity is only demonstrated when a

single (clonogenic) cell forms a progeny of multiple phenotypes

in vivo [142]. Population-scale cell analyses neglect the fact that

MSC populations are not homogeneous [143], that MSC gene

and protein expression profiles depend on culture conditions

[144], and that MSC identification or sorting using adhesion

assays or light-scattering properties during flow cytometry pro-

vides only a partial enrichment of multipotent cells [145]. MSC

responses to substrate elasticity and growth factors is also hetero-

geneous; for example, switching induction medium after one

week of MSC culture on substrates with defined elasticity

produced a mixed phenotype [11].

Obstacles associated with MSC heterogeneity can be

partially overcome by characterizing them based on their

individual (clonal) ability to proliferate and differentiate.

Cell division can result in daughter cells with the same or

disparate fates (symmetric or asymmetric division, respect-

ively), and analysis of the progeny at each stage provides a

more accurate picture of the original cell’s potential. Using

a high-capacity assay to quantify clonal MSC trilineage

potential, Russell et al. [18] found a complex hierarchy of
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lineage commitment in MSC clones derived from two healthy

adult human donors (figure 7a): approximately 50 per cent

were tripotent, and the remaining 50 per cent were either

bipotent, unipotent or did not differentiate. Significant differ-

ences in bipotent osteogenic/adipogenic populations were

found between donors (approx. 5% or approx. 20% of the

total cells, depending on the donor) and these values were

roughly reversed for the case of osteogenic/chondrogenic

bipotency; the loss of trilineage potential was associated

with diminished proliferation capacity and CD146 expres-

sion. These cell source (donor)-dependent heterogeneities

within MSC populations that were demonstrated using

clonal assays should inspire clonal mechanobiology assays.
In population-based assays aimed at measuring mechanical

effects on MSC differentiation, altered subpopulation pro-

liferation rates can confound data interpretation. Clonal

assays and individual cell tracking are required to distinguish

between mechanically directed differentiation versus altered

subpopulation proliferation rates.

Mechanical properties are reflective of cell phenotype and

are therefore another measure of heterogeneity. Experimental

platforms that are used to mechanically characterize cells on

an individual basis include atomic force microscopy (AFM),

electro-deformation, optical tweezers (OT), magnetic pulling

or twisting cytometry (MPC or MTC), and other methods

that are reviewed in detail elsewhere [149]. AFM is a scanning
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probe technique that is use for cell, hydrogel and microtissue

stiffness measurements [150]. Mechanical stimulation and

force spectroscopy of specific cell adhesion molecules is

achieved by functionalizing AFM probes with ECM proteins

or whole cells [151]. Maloney et al. [19] used AFM to

mechanically assess MSC phenotype transitions during

extended passage (17 population doublings) on polystyrene

culture substrates: they observed passage-dependent CSK

coarsening, increased stress fibre radius (from 100 to

500 nm), and increased MSC stiffness (2–8 kPa). The authors

noted that osteogenesis of cuboidal MSCs was better corre-

lated with average MSC stiffness than with surface marker

presentation. Although individual cells can be mechanically

probed using AFM, this method does not share most of the

benefits associated with miniaturized platforms.

MSC heterogeneity is efficiently studied using microfluidic

platforms that provide controllable medium perfusion

[152–154] for long-term culture of individually captured cells

[155], high-density arrayed cell cultures (figure 7b) [156] and

arrayed cell niches [157,158]. These and similar platforms

enabled on-chip gene profiling [156,159,160] and high-

throughput single cell bioinformatics [161]. Using automated

image acquisition and cell tracking software, individual cells

can be tracked during migration and proliferation (figure 7c)

[147]. For example, Rowat et al. [148] used a microfluidic

platform to trap cells in ‘lineage chambers’ where single pro-

genitor cells were constrained to grow in a line (figure 7d ):

flow through a bypass channel doubled when a single cell

was trapped, increasing the probability for cells to flow

through the bypass while still allowing for fluid flow through

the trapping channel. Using this platform, they observed fluc-

tuations and patterns in protein expression that propagate in

single cells over time and over multiple generations. They

noted the platform’s utility to study asymmetries at cell

division, and correlations between cells caused by their pedi-

gree, replicative age or other physical traits such as volume.

Adapting these strategies for mechanobiology assays that

screen substrate properties is relatively straightforward given

that substrates can be patterned in high-density arrays using

methods such as blotting and microcontact- or screen-printing

[13,72,77,78].

Dynamic mechanical forces are applied to individual cells

in microfluidic devices using acoustic, electrical, magnetic or

optical forces [149]. Minimal mechanical contact between

cells and device structures enables integration of these

methods in microfluidic platforms for automated cell sorting

and mechanobiological analysis. Electrical forces are used

to deform whole individual mammalian cells [162,163], to

correlate cell deformability with CSK features [164] and for

molecular force spectroscopy [165]. Functionalized beads

that are attached to cells permit force coupling through

specific molecular binding proteins (e.g. integrins), for

example using OT [166], MPC [167,168] or MTC [169,170].

By applying MPC forces to integrin-bound magnetic

beads, nearly instantaneous calcium influx was observed in

proportion to mechanical stresses, representing a direct and

immediate mechanotransduction response to stresses applied

through integrins [168]. MTC was used to measure force-

dependent CSK stiffening [169], induced stretch-activated

calcium flux in fibroblasts [171] and to show that integrins

focus mechanical stresses locally on G proteins within focal

adhesions at the site of force application [170]. The demon-

strated use of these methods for mechanobiology and their
integration in microfluidic platforms suggests their potential

utility for high-throughput clonogenic mechanobiology.
4. Open questions and future directions
Mechanistic descriptions of MSC mechanobiology require con-

tinued refinement. Molecular mediators between CSK tension

and transcriptional regulators such as YAP/TAZ await dis-

coveries [82], and the competition between canonical and

non-canonical Wnt signalling in mechanically directed MSC

differentiation also requires clarification [121]. Increased exper-

imental throughput of microfabricated platforms will help

clarify cytosolic and nuclear interactions between smads,

YAP/TAZ, b-catenin, and other transcriptional regulators.

Patterned ECM proteins that control cell shape provided valu-

able insights into these mechanisms and will continue to play

key roles in experimental mechanobiology. Future work will

integrate high-density patterned substrates within microfluidic

devices for prolonged cell culture and combinatorial screening

of soluble and mechanical factors.

The ability to maintain MSC multipotency during pro-

longed culture using nanofabricated topological features

[88] is intriguing and worthy of further investigation. These

methods are beneficial to regenerative medicine strategies

that require ex vivo expansion of MSCs extracted from patients.

The potential generality of prolonged multipotency should be

tested using a wide variety of cell sources (e.g. MSCs from

various donors and tissue sources). Nanoscale-disordered

topographies that target a small number of canonical pathways

may prove preferable to soluble factors for directed MSC differ-

entiation [84,96]. Topographical features are readily patterned

on a variety of substrates and are well suited for high-density

arrays in which large numbers of feature properties are used

to screen MSC responses. The effects of ordered versus disor-

dered features also raises interesting questions related to

potential roles of symmetry and disorder in vivo. As exper-

imental cell biology embraces heuristic approaches to

problem solving, the use of multiscale and variously ordered

topographies will increasingly be used to study cell fate in com-

plex environments [172]. The trend towards larger sample

numbers and combinatorial experiments require increasingly

sophisticated data acquisition, statistical analysis [79] and

systems biology modelling efforts [173].

Heterogeneity within cell populations is a pervasive

problem and a fruitful area for discovery. Despite the acknowl-

edged heterogeneity of MSC populations, biomarkers that

correlate with osteogenic outcome of MSC differentiation inde-

pendent of donor and tissue source have been identified [174]

and protein–protein interaction networks shared by pluripo-

tent cells [175] suggest that progenitors do share common

properties. Nevertheless, numerous population-based studies

should be verified using clonogenic assays to determine the

relative importance of intrinsic and extrinsic causes of hetero-

geneity. The effects of dynamic mechanical stimulation on

MSC multilineage potential, for example, have not been tested

using clonogenic assays. Deformable membrane arrays [59]

are particularly well suited for these studies, but long-term

mechanically dynamic culture requires careful consideration

of cell attachment [176].

Further studies are needed to investigate differences in

cell behaviour that are observed between two- and three-

dimensional cultures [97,104,177]. Although cell-based traction
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forces can be measured in three-dimensional hydrogels [107],

measuring the local elasticity that is probed by cells is challen-

ging, particularly when cell-based ECM remodelling alters

these properties. Macroscale hydrogel elasticity measurements

may therefore not accurately reflect the elasticity sensed

by embedded cells. Although this problem is particularly chal-

lenging, it may be possible to measure embedded bead

displacements resulting from applied contact-free forces

(e.g. magnetic) and thereby estimate mechanical properties

throughout the hydrogel or matrix volumes.

Regenerative medicine is a key application of MSCs

that requires detailed knowledge of MSC mechanobiology.

In addition to their multilineage potential, MSCs secrete

immunosuppressive molecules that facilitate regeneration of

injured tissues [178]. Heterogeneity of MSC immunosuppres-

sive potential is, however, largely unexplored and formidable

practical difficulties are associated with differentiating and

pre-conditioning MSCs for subsequent survival in physio-

logical environments that often contain high levels of

inflammatory mediators and catabolic cytokines [179]. This

challenge reaffirms the importance of understanding the

MSC niche under normal and pathological conditions [180].
We discussed experimental mechanobiology platforms that

used high-throughput screening of niche factors and increased

biomimicry to provide increasingly accurate mechanistic

descriptions of subcellular components regulating cell fate.

Microtechnology platforms are promising for this purpose

because they provide multiple context-dependent ‘niches’

that can be used for basic studies or ex vivo expansion of

clonogenic MSCs.

In this review, we introduced MSC mechanobiology

through the context of contractility-based mechanosensing

and mechanically regulated lineage specification. We described

MSC responses to static and dynamic mechanical cues in two-

and three-dimensional microenvironments. The platforms we

described and the results obtained clearly demonstrated

that mechanical forces play key roles in MSC biology and that

much remains to be learned. Microfabricated array-based

platforms will accelerate discoveries in MSC mechanobiology

and biomimicry will help translate experimental results to

tissue engineering, regenerative medicine and toxicology

applications. These challenges present opportunities for multi-

disciplinary research that will transform the way cells and

tissues are cultured in the laboratory.
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