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Cell Contour Tracking and Data Synchronization for
Real-Time, High-Accuracy Micropipette Aspiration
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Abstract—This paper presents an automated cell contour visual
measurement technique and a data synchronization mechanism
for real-time, high-accuracy mechanical characterization of in-
dividual cells with micropipette aspiration. A computer vision
tracking algorithm is developed for automatically measuring cell
deformation parameters in real time (30 Hz) with a resolution
down to 0.21 pixel, significantly enhancing the accuracy and
efficiency of micropipette aspiration. To achieve a high charac-
terization accuracy, the cell deformations and applied pressure
changes are precisely synchronized using a data synchroniza-
tion mechanism. Experimental results on both solid-like cells
(interstitial cells) and liquid-like cells (neutrophils) quantitatively
demonstrate that the visual tracking algorithm is capable of sig-
nificantly increasing the efficiency and accuracy of micropipette
aspiration. Among several characterized mechanical parameters,
the viscoelastic properties of porcine aortic valve interstitial cells
were, for the first time, quantified in this study.

Note to Practitioners—Micropipette aspiration is a widely used
technique for characterizing mechanical properties of individual
biological cells. Automated cell contour measurements can prove
very useful for users of micropipette aspiration to avoid hours of
laborious postprocessing, which is necessary with existing systems.
Furthermore, compared with manual measurements, sub-pixel
tracking of cell deformation parameters leads to a higher accuracy
in quantifying cell mechanical properties.

Index Terms—Cell contour visual tracking, high accuracy, mi-
cropipette aspiration, precise data synchronization.

1. INTRODUCTION

ECHANICAL signals (i.e., applied forces and stresses)
M are capable of regulating the phenotypic expression of
biological cells. These mechanical stimuli are particularly im-
portant for highly mechanically responsive cells such as car-
diovascular, musculoskeletal, and bone cells. For example, it is
known that mechanical forces play a major role in the regula-
tion of cell adhesion and cytoskeletal organization [1]. While it
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Fig. 1. Schematic of micropipette aspiration.

is important to investigate how mechanical forces/stresses reg-
ulate cell responses, it is also significant to characterize the me-
chanical properties of individual cells for understanding cellular
structures and functions, predicting their response to mechan-
ical stimuli, and correlating mechanical properties to disease
states [2].

For measuring mechanical properties of a living cell, the cell
must be deformed in some way by a known force or stress and its
deformations measured. Besides atomic force microscopy [3],
laser trapping [4], magnetic bead measurements [5], and micro-
electromechanical systems (MEMS)-based force measurements
[6], micropipette aspiration is a popular technique for quanti-
fying mechanical properties of individual cells, such as Young’s
modulus and viscosity [7].

As shown in Fig. 1, the micropipette aspiration technique ap-
plies a sucking pressure AP to deform a cell, and a portion
of the cell is elongated into the micropipette. Experimentally,
biological cells can be divided into two types, solid-like cells
and liquid-like cells, according to their different responses to
sucking pressures [7]. Liquid-like cells (e.g., neutrophils [8], [9]
and erythrocytes [10]) behave like a liquid droplet, and an ap-
plied pressure above a critical value causes complete cell aspi-
ration into the micropipette. On the other hand, a cell exhibiting
behavioral characteristics of a solid (e.g., endothelial cells [11],
[12] and chondrocytes [13]) continues to enter a finite distance
into the micropipette when applied pressure exceeds the critical
value. For characterizing both solid-like and liquid-like cells,
the applied negative pressure (AP) and resulting cell defor-
mation parameters (e.g., aspiration length L and cell contour
radius outside micropipette R.) must be experimentally mea-
sured. Various continuum models [8], [9], [11], [12], [14] are
employed for quantifying cellular mechanical parameters.

Key experimental factors that determine the validity of me-
chanical characterization results include the accuracy of applied
pressure, the accuracy of cell geometrical parameter measure-
ments, and the synchronization of applied pressure and resulting
geometrical changes of the cell. In conventional micropipette
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Fig. 2. Schematic diagram of the micropipette aspiration system.

systems, cell deformation images and pressure data are acquired
separately using a video recorder and a pressure sensor, and the
measured pressure data are recorded on the video tape to achieve
data synchronization. Typically, a large number of images (30
frames/s for minutes) are recorded for postprocessing in which
cell contours are manually measured with a cursor on the video
screen. Cell contour measurements are tedious for human op-
erators, making micropipette aspiration a time consuming tech-
nique. More importantly, offline manual measurements can pro-
duce significant errors in subsequent mechanics modeling due
to the low accuracy of manual measurements. In the most ideal
case, manual measurements are still limited to a resolution of
one image pixel. Thus, the development of an automated com-
puter vision tracking algorithm capable of conducting cell con-
tour measurements in real time (30 frames/s) with a sub-pixel
resolution, is highly desired.

Few attempts have been made by leveraging image pro-
cessing and computer vision techniques to improve the
accuracy and efficiency of the micropipette aspiration tech-
nique. In [15] and [16], algorithms were developed for offline
postprocessing recorded images of aspirated lipid vesicles.
These algorithms measure deformation parameters by locating
only a few determinant points on a vesicle contour since the
outside portion of an aspirated vesicle is largely spherical.
However, these algorithms do not consider/accommodate the
aspiration of solid-like cells (e.g., interstitial cells) that often
reveal irregular contours, in which all points on an irregular
cell contour should be accurately tracked in order to warrant a
high measurement accuracy.

This paper presents a sub-pixel cell contour visual tracking
algorithm, a precise data synchronization mechanism, and their
application to real-time, high-accuracy micropipette aspiration.
The images of deformed cell contours and sucking pressure
data are precisely synchronized on a host computer. The vi-
sual tracking algorithm is capable of automatically locating ir-
regular cell contours and micropipette tip, and therefore mea-
suring the cell deformation parameters in real time during the
aspiration process, enabling online characterization of cellular
mechanical properties. Experiments demonstrate that the auto-
mated approach of cell contour measurements greatly improves
the accuracy and efficiency in quantifying cellular mechanical
parameters with the micropipette aspiration technique.

II. SYSTEM SETUP

The experimental system, schematically shown in Fig. 2, con-
sists of an inverted microscope (Olympus IX81) with a CMOS
camera (Basler A601f), a 3-DOF microrobot (Sutter MP-285)
for positioning the micropipette, a XY motorized stage (Prior
Scientific ProScan II) for positioning cell samples, a pressure
system for generating well-controlled negative pressures, and a
host computer with a data acquisition card (NI PCI-6229) for
cell contour visual tracking and pressure data acquisition.

The sucking pressure unit includes an adjustable water reser-
voir, a z-motor, a solenoid valve, and a pressure sensor (All
Sensors U.S.). Pressure is controlled by adjusting the height of
the reservoir using the z-motor with a positioning resolution of
40 nm. The pressure sensor is located close to the micropipette
tip to minimize the pressure-transmission-caused time lag be-
tween pressure measurements and applied pressure, which was
determined to be within 3 ms through fluidic finite element sim-
ulation. The differential pressure sensor is silicon based with a
temperature compensation module and an output amplification
circuit that is capable of directly providing 0 ~ 4 'V output to
the data acquisition card. The pressure measurement resolution
is 0.1 Pa.

The system setup is mounted on a vibration isolation table.
The microscopy images and sucking pressure data in the system
are directly acquired and processed by the host computer, en-
abling precise synchronization of cell deformations and sucking
pressure. The lapse time between the acquisitions of the two
types of signals is less than 5 ms.

III. AUTOMATED CELL CONTOUR MEASUREMENTS

In order to accurately measure cell deformation parameters, a
sub-pixel visual tracking algorithm is developed. The algorithm
is described in this section for measuring two typical cell defor-
mation parameters, the aspiration length L, and the cell contour
radius outside micropipette R, (Fig. 1). However, the algorithm
is also capable of accurately tracking irregular cell contours out-
side micropipette, from which other cell deformation parame-
ters can be extracted for different cell mechanics models.

For the measurement of aspiration lengths (L), the mi-
cropipette tip and the leading edge of the aspirated cell portion
must be precisely located. For the measurement of cell outer
radius (R.), the cell contour outside the micropipette is ac-
curately tracked. In this study, an identification algorithm is
developed to locate the micropipette tip, providing a reference
position for the measurement of L. A canny edge detector with
adaptive thresholding is employed to detect the cell contour
outside the micropipette. A Kalman tracking algorithm is
responsible for tracking the leading edge that projects into the
micropipette. The current implementation assumes that the cell
locates to the right of the micropipette; however, the algorithm
can be readily modified to account for location differences.
The micropipette was adjusted and well aligned horizontally.
In the following description, all images are first smoothed by a
low-pass Gaussian filter, and the resulting images are denoted

by IL(x/y)
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Fig. 3. Image sequence of micropipette tip identification. (a) Smoothed image
of the first frame. (b) After gradient subtraction. (c) Adaptively thresholded.
(d) Dilated image. (¢) Top and bottom edges of micropipette walls found in (d).
(f) Identified tip location.

A. Micropipette Tip Identification

In order to measure the length of cell projection into the mi-
cropipette, an identification algorithm is developed to locate the
micropipette tip in the first frame of image where the estab-
lishment of initial contact between the cell and the side wall
of the micropipette tip occurs. This contact blurs the vertical
edge of the side wall. The edge of the cell in the proximity
of the micropipette tip makes it difficult to precisely locate the
micropipette tip using conventional edge detection algorithms,
such as the Canny edge detector.

1) Gradient Subtraction: In our study, most of the edge in-
formation from the cell in the very first image frame is first re-
moved using a gradient subtraction method. The absolute hori-
zontal gradient is subtracted from the absolute vertical gradient
in the first image frame. The resulting image [Fig. 3(b)] is

2) Adaptive Thresholding : D1 (z,y) is adaptively thresh-
olded and converted into a binary image Bi(z,y) [Fig. 3(c)]
using the Otsu method [17].

3) Morphological Operation: A morphological close oper-
ation is used to connect the outer edge and inner edge of each
micropipette wall into a single contour [Fig. 3(d)].

4) Tip Identification: By finding the two contours that span
the greatest horizontal distance in the binary image Fig. 3(d),
the top and bottom edges of the micropipette walls are found
[Fig. 3(e)]. The horizontal image coordinate of the rightmost
point in these two contours is identified as the location of the
micropipette tip [Fig. 3(f)].

The identified micropipette tip is then used as a reference po-
sition for tracking cell deformations, L and R.. The processing
time for tip identification is approximately 100 ms. In our ex-
periments, besides the use of a vibration-isolation table to mini-
mize vibration-induced position change of the micropipette tip,
other conditions (e.g., air flow) were also controlled to keep the
micropipette tip location unchanged during the subsequent cell
aspiration process. Thus, the micropipette tip identification is
conducted only once, and does not sacrifice the real-time per-
formance of cell contour tracking.

@ W

Fig. 4. Image sequence of tracking cell contour outside micropipette. (a)
Smoothed image. (b) After adaptively thresholded Canny edge detection. (c)
Cell contour determination using tip location information. (d) Determination
of ROIs for subsequent tracking.

B. Tracking of Cell Contour Outside Micropipette

1) Canny Edge Detector With Adaptive Thresholding: The
Canny edge detector tracks local maxima of an image gradient
and eliminates weak edges by hysteresis thresholding using two
constant threshold values. The high threshold 7} is used to de-
tect strong edges, while the low threshold 7; detects weaker
edges that are connected to strong edges. Due to the fact that
different cell types reveal different image features, instead of
frequently adjusting these two constant threshold values to ac-
commodate different cell types, an adaptive thresholding algo-
rithm for Canny edge detection [18] is employed for tracking
the cell contour outside the micropipette.

In the adaptive thresholding method, the histogram H (7) from
the gradient magnitude of the image D1 (z, y) is first calculated,
and the maximum value H,,,, is determined. The deviation of
H (i) from H .y is given by

§ H(i) — Hypeo]?

o= ¥ . 2)

Accordingly, T}, is set to be Hpy.. + o. The deviation ¢’
of H(i) from H,.x is recalculated to exclude those pixels
with gradient magnitudes above 7}, Finally, the low threshold
value is determined as T} = Hpax + o’. Fig. 4(b) shows the
result after Canny edge detection with adaptively determined
threshold values and a morphological close operation that is
used to connect the Canny detected edges of the cell contour
and micropipette walls into a single contour (shown in red).

2) Radius Measurement: After edge detection and close
operation, the cell contour outside the micropipette [Fig. 4(c)]
is extracted from the edge of the cell contour and micropipette
walls [Fig. 4(b)] using the location information of the mi-
cropipette tip. In order to accurately determine the radius of
the cell portion outside the micropipette R., a least square
circle fitting algorithm [19] is used to fit the extracted cell
contour into a circle for measurements. Note that the located
cell contour data can also be used to extract other parameters
required as input by different cell mechanics models (e.g., unit
vectors normal to the cell contour [14]).
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C. Tracking of Aspiration Lengths Into Micropipette

Once the micropipette tip and the cell center are identified
in the first frame of image, two ROIs, shown in Fig. 4(d), are
determined and set for the subsequent tracking process. One
ROI, to the right of the micropipette tip, is set to contain the cell
portion outside the micropipette. The other ROl is to the left of
the micropipette tip and contains the interior of the micropipette.
The two ROIs are both symmetrical along the horizontal axis
crossing the detected cell center.

The leading edge projecting into the micropipette must be
accurately tracked in order to obtain accurate measurements
of aspiration lengths L. However, the aspirated portion usually
does not have a very distinct border, appearing rather faint. Ac-
tive contour algorithms, such as Snakes, were found incapable
of providing robust tracking performance due to the difficulty
of controlling the snake’s potential field to locate the leading
edge. Snakes are particularly susceptible to the noise in the
micropipette and the intracellular features that are often more
prominent than the leading edge.

A Kalman tracking algorithm is developed that is capable of
detecting weak edges and is robust to noises. The algorithm first
obtains a horizontal gradient magnitude from the ROI that con-
tains the leading edge. A low threshold is applied to the gra-
dient for detecting the weak leading edge and producing a bi-
nary image. For example, a value of 20 was effective for human
neutrophils in our experiments. All contours in the binary image
are detected into chain codes, and the area for each contour is
calculated. The leading edge is determined by selecting the left-
most contour with an area above a threshold value that is set
proportional to the inner diameter of the micropipette, by which
most of the noisy contours are excluded. The horizontal coordi-
nate of the leftmost point in the leading edge is regarded as the
preliminarily measured position. To further improve tracking ro-
bustness, this measured position is processed by a Kalman filter
[20] to predict the real location of the leading edge and elimi-
nate disturbances from the noisy points.

Briefly, the Kalman filter uses a state vector X; =
[7i,mi_1,7;_2]T that consists of the estimated real posi-
tions of the leading edge in the past three images. A transition
matrix is used to model the dynamics of the edge with the
assumption of constant acceleration

3 -3 1
A=(1 0 0
0 1 0

The prediction step of the Kalman cycle is given by
3

where X/ is the predicted state vector. Updating is conducted
according to

X! = AX;_;

where K; is the Kalman gain [20], z; is the measured position
of the leading edge, and H = [1 0 O0]. The real position of
the leading edge of the aspirated cell is determined by

2 = HX,. )

IV. CELL ISOLATION AND CULTURE

The micropipette aspiration system and the sub-pixel cell
contour visual tracking algorithm were applied to character-
izing mechanical properties of solid-like porcine aortic valve
interstitial cells (PAVIC) and liquid-like human neutrophils.

Aortic valve leaflets were harvested from hog hearts (~ 7
months old) obtained at a local abattoir. After rinsing with an-
tibiotics, each leaflet was treated with collagenase (150 U/mL,
37 °C, 20 min) and the leaflet surfaces were scraped to remove
endothelial cells. The leaflets were then minced, and digested
with collagenase (150 U/mL, 37 °C, 2 h). The supernatant was
strained and centrifuged, and the cell pellet was resuspended
in standard tissue culture medium (DMEM supplemented with
10% FBS and 1% antibiotics). The PAVICs were plated at
10% cells/cm 2 on tissue culture flasks, and were kept in an
incubator. The medium was changed every 2 days, and the cells
were passaged when confluent. P2 cells were trypsinized and
resuspended in standard tissue culture medium at 10° cells/mL
for the experiments.

Human neutrophils used in the experiments were isolated
from 5 ml of blood from a healthy male volunteer (27 years
old) using one-step Polymorphprep (Accurate Chemical, West-
bury, NY) and were suspended in Hanks’ balanced salt solution
(HBSS) with 10% compatible plasma at 10° cells/mL for the
experiments.

V. EXPERIMENTAL RESULTS

Both elastic and viscoelastic properties of PAVICs and human
neutrophils were experimentally quantified. The experiments
were conducted at room temperature of 22 °C. Both types of
cells were characterized between 15 and 90 min after passage/
isolation, and the results revealed no significant dependence on
testing time during this period.

A glass slide (Fisher Scientific U.S.), coated with 1% agar,
was used as the substrate. Customized micropipettes (Humagen
U.S.) used in the experiments were coated with 1% agar to avoid
cell adhesion. A 60x objective (NA 0.7) plus a 1.6xcoupler,
and bright-field imaging were used for observing the cells. The
calibrated pixel size is 0.11 pm x 0.11 pm.

Images and pressure data were acquired at a frequency of
30 Hz. The cell contour visual tracking algorithm cost 10.2 ms
for processing each frame of image, proving the real-time capa-
bility for measuring cell deformation parameters. For PAVICs,
the tracking resolution of L is 0.21 pixel. For human neutrophils,
the tracking resolution is 0.29 pixel for L and 0.42 pixel for R,.

A. Characterization of PAVICs

1) Measurements of Young’s Modulus: A total of ten PAVICs
were tested in the experiments (five for elastic characterization
and five for viscoelastic characterization). The average diam-
eter of the PAVICs is 14.2 pm, and the inner diameter of the
micropipettes for PAVIC characterization is 4.6 pm. An initial
tare pressure (~ 40 Pa) was applied for 60 s to the cell to form
a seal between the micropipette and the cell [Fig. 5(a)]. Sucking
pressure in 6-8 increasing steps from 0.04 to 1 kPa was then
applied to deform the cell. An interval of 60 s between two ad-
jacent steps allowed the cell to reach equilibrium. Fig. 5 shows
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Fig. 5. Micropipette aspiration of a porcine aortic valve interstitial cell.
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Fig. 6. PAVIC aspiration length versus sucking pressure.

the procedure of aspirating a PAVIC and the visual tracking re-
sults, where the tracked cell contours outside micropipette are
highlighted by red lines.

The aspiration lengths (L) were online measured by the sub-
pixel cell contour tracking algorithm. Two representative sets
of tracking data (L) vs. sucking pressure are shown in Fig. 6.
Homogenous half-space elastic model [11] for solid-like cells
was employed for extracting Young’s modulus values from the
experimental data

2w L
AP = —F—
3¢ R, ©)

where E is the Young’s modulus of the homogeneous solid,
AP is the sucking pressure, R, is the inner diameter of the mi-
cropipette, and ¢ is a wall function determined by the pipette
dimension and has a typical value of 2.1. The Young’s mod-
ulus values of 345.8 £+ 142.5 Pa were obtained based on the
measurements of five PAVICs. This result is comparable to the
previously reported data of PAVICs (~ 449 Pa) [21].

2) Measurements of Viscoelastic Properties: To date, there
are no reported results on the viscoelastic properties of PAVICs,
which are significant to quantify for understanding sclerosis
(thickening and calcification) of the aortic valve. In this study,
the viscoelastic properties of the PAVICs were quantified using
the homogenous half-space linear viscoelastic model [12].

L(pm)

0 50 100 150

time (sec)

Fig. 7. Viscoelastic response of PAVICs.

TABLE 1
PAVIC VISCOELASTIC PARAMETERS (BASED ON FIVE CELLS)

ki (Pa)
153.8459.9

k, (Pa)
310.94£70.4

7 (8)
45.2+11.6

Parameters 1 (Pa-s)

4330.5+958.1

Values

When a stepwise sucking pressure is applied to the cell, cell
deformations are

L(t) = L. {1 _ kllfkg exp <-£)} Mt )

where
2R,AP
Lo, = lim L(t) = —2— (8)
t—o00 7rk'1
h(t) is a unit step function
1, t>0

k1 and k- are the elastic constants in the Kelvin model, and 7 is
a time constant given by

M ky
=14+ =

ka < + k-2>
where 1 is the coefficient of viscosity in the Kelvin model. From

(7), the initial aspiration length (Lg4.) due to the elastic effect
can be derived as

T

(10)

0+_k1+k2 *

Y

k1 is experimentally obtained by measuring the asymptotic
length of the elongated portion L. ko is experimentally
obtained by measuring L., and Lg . Fitting the experimental
data into (7) determines 7 and px.

In the experiments, a sucking pressure step of 860 Pa (stan-
dard deviation £56.7 Pa) was applied to the PAVICs, while re-
sulting aspiration lengths L. were measured in real time. The
initial elastic response Lg., was precisely measured, and a high
accuracy is warranted by precise synchronization in the system.
The experimental data were fitted into (7), and the parameters of
k1, ko, 7, and p in the model were computed according to (8),
(10), and (11). Fig. 7 shows two representative sets of tracking
results of L and the fitted curves. The statistics of the five aspi-
rated PAVICs for viscoelastic characterization are summarized
in Table L.
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Fig. 8. Micropipette aspiration of a human neutrophil. (a) Initial state after
the establishment of a seal. (b) The critical state. (c) Deformed cell flowing
halfway into micropipette. (d) Cell completely flowing into micropipette except
the hemispherical portion.

Compared with the reported characterization results of
porcine aortic endothelial cells [12], which are another type of
solid-like cells, the elastic constants of the PAVICs, k; and ko,
are approximately twice those of the endothelial cells, and the
viscosity coefficient of the PAVICs, p, is about half of the value
of the endothelial cells. These results indicate that the PAVICs
have a higher stiffness and a lower viscosity than porcine aortic
endothelial cells.

B. Characterization of Human Neutrophils

Fig. 8 shows the procedure of aspirating a neutrophil and the
tracking results. The inner diameter of the micropipettes used
in the neutrophil experiments is 4 ym. The average diameter of
the neutrophils is 8.4 pm. The mechanical parameters of human
neutrophils were determined through cortical shell-liquid core
models [8], [9].

At the beginning of aspiration, the sucking pressure was con-
trolled to increase until the aspiration length was equal to the
micropipette radius, which was measured on line by the cell con-
tour visual tracking algorithm. The critical pressure and the ra-
dius R, at this point were automatically recorded by the system,
and the cortical tension of the surrounding shell can be achieved
by the equilibrium equation [8], [9]

AP =2T (Rip - }%) , (AP = AP. when ][%—’; = 1) (12)
where T is the cortical tension, R.. is the radius of the cell por-
tion outside the pipette, and AP, is the critical pressure. After
this critical point, the sucking pressure was increased by a step
to 820 Pa (standard deviation +48.8 Pa), causing the cell to au-
tomatically flow into the micropipette. During this process, the
aspiration lengths and the radius of the cell portion outside the
micropipette were measured in real time. Finally, the measured
parameters were fitted into the following equation to calculate
the viscosity of the cytoplasm [9]

_ R,AP
T dL 1-R

() m (52)
where m is a constant with a typical value of 6, and R,., is the
radius of the outer cell portion corresponding to the middle point

in the linear region of L versus time in experimental data.
Fig. 9 shows the tracking results of aspiration lengths L
for five tested neutrophils. The linear regions of these curves

were fitted to calculate the constant flowing velocities. The
measured flowing velocities and the stepwise sucking pressure

13)
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Fig. 9. Neutrophil tracking results of aspiration lengths into micropipette.
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Fig. 10. Measurement resolutions achieved by human operators and by auto-
mated cell contour visual tracking.

TABLE II
AVERAGE TIME FOR MANUALLY MEASURING ONE FRAME OF IMAGE
Cell types PAVIC Neutrophil
Human operator #1 25.2sec 30.4sec
Human operator #2 19.1sec 32.9sec
Human operator #3 10.9sec 20.9sec

(804 + 48.3 Pa) were finally substituted into (13) for deter-
mining viscosities. For the five tested neutrophils, viscosity
is 191.9 &+ 86.1 Pa - s, and the determined cortical tension
is 40.9 £+ 10.8 pN/um, which are comparable with previous
results (~ 135 Pa- s for viscosity and ~ 35 pN/um for cortical
tension) reported in [8] and [9].

VI. DISCUSSION

Images of the 15 characterized cells (ten PAVICs and five neu-
trophils) at aspiration equilibrium were measured by three well-
trained human operators. Manual measurement resolutions were
quantified by calculating the standard deviation of manually
measured data for each cell deformation parameter (i.e., L and
R.). Fig. 10 summarizes averaged resolutions of manual mea-
surements together with automated visual tracking resolutions.

The much better measurement resolutions of automated cell
contour visual tracking permit more accurate measurements
of cell deformation parameters. Furthermore, the average
time required for processing each frame of image in manual
measurements is listed in Table II. Compared to the speed
of manual measurements (10.9 s-32.9 s/image), automated
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TABLE III
ERRORS OF CELL PARAMETER QUANTIFICATION IN MANUAL MEASUREMENTS

Mechanical Human Human Human
parameters operator #1 | operator #2 | operator #3

E 23.2% 19.8% 35.7%

3 ky 16.9% 11.5% 14.3%

5 ks 39.2% 45.6% 40.1%

A T 20.1% 12.6% 26.7%

u 36.6% 29.3% 21.2%

<) T, 41.3% 32.5% 50.6%

35
Z n 13.0% 21.2% 27.1%

visual tracking provides a much higher measurement efficiency
(10.2 ms/image). Table III summarizes mechanical parameter
quantification errors of manual measurements, where each
entry represents the average value from five cells. One can
see that the sub-pixel visual tracking algorithm is capable of
improving the measurement accuracy by up to 50.6%.

The cell contours measured in the micropipette aspiration
experiments are only 2-D cross-sectional contours that do not
reveal the complete 3-D cell geometry. Consequently, errors
could exist in the absolute cell geometrical parameters (e.g., cell
volume) measured using the micropipette aspiration technique.
Further enhancement of the measurement accuracy of such ab-
solute cell geometrical parameters can possibly be achieved by
detecting 3-D cell geometries via focus-based 3-D reconstruc-
tion algorithms [22], [23].

VII. CONCLUSION

This paper presented a real-time, sub-pixel cell contour mea-
surement technique with a resolution down to 0.21 pixel and
a precise data synchronization mechanism for real-time, high-
accuracy micropipette aspiration. The cell contour tracking
algorithm and the experimental system were applied to con-
duct micropipette aspiration experiments on porcine aortic
valve interstitial cells and human neutrophils, demonstrating a
50.6% improvement of characterization accuracy over manual
measurements. These automation techniques will prove impor-
tant for realizing highly efficient, accurate characterization of
mechanical properties of biological cells using micropipette
aspiration.
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