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Abstract
Obstacle map estimation based on efficient semantic segmentation networks is promising for improving the environmental
awareness of unmanned surface vehicles (USVs). However, existing networks perform poorly in challenging scenes with
small obstacles, scenery reflections, boat wakes, and visual ambiguities caused by unfavorable weather conditions. In this
paper, we address the small obstacle segmentation problem by learning representations of obstacles at multiple scales. An
efficient multistage feature aggregation (MFA) module is proposed, which utilizes fully separable convolutions of different
sizes to capture and fuse multiscale context information from different stages of a backbone network. In addition, a novel
feature separation (FS) loss function based on Gaussian mixture model is presented, which encourages the MFA module to
enforce separation among different semantic features, thereby providing a robust and discriminative representation in various
challenging scenes. Building upon the MFA module and the FS loss function, we present a fast multistage feature aggregation
and semantic feature separation network (FASNet) for obstacle map estimation of USVs. An extensive evaluation was
conducted on a challenging public dataset (MaSTr1325). We validated that various lightweight semantic segmentation
models achieved consistent performance improvement when our MFA module and FS loss function were adopted. The
evaluation results showed that the proposed FASNet outperformed state-of-the-art lightweight models and achieved 96.71%
mIoU and > 1.5% higher obstacle-class IoU than the second-best network, while running over 58 fps.

Keywords Obstacle map estimation · Unmanned surface vehicles (USVs) · Semantic segmentation ·
Convolutional neural network (CNN)

1 Introduction

Recently, unmanned surface vehicles (USVs) have attracted
a considerable amount of attention due to their porta-
bility, excellent concealment, and low cost [1–6]. These
advantages make USVs ideal for oceanographic research,
reconnaissance and patrolling missions in coastal waters
and narrow marinas. However, in autonomous navigation,
various obstacles may appear on the preplanned path of a
USV, posing threats to the USV. Therefore, it is necessary
for USVs to have an onboard unit for obstacle map esti-
mation, adjust planned paths, and avoid collisions. Various
sensors have been explored to handle this task, including
sonar [7], radar [8], LIDAR [9], and cameras [1–5]. Among
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them, camera-based methods have become popular because
cameras are lightweight and affordable and require minimal
power consumption. These characteristics render cameras
more suitable for USVs with limited payload and power
consumption.

Reliable and efficient obstacle map estimation is a
fundamental prerequisite for USVs to achieve autonomous
navigation. Over the last decade, a variety of methods based
on computer vision techniques have been proposed for
maritime environment perception. Conventional methods
[10–14] mostly utilize the horizon as guidance to reduce
the search space of potential obstacles. These methods first
detect a straight horizon line and then perform obstacle
detection in the region below the horizon using various
image processing algorithms, including object classification
[10], background modeling [11, 12], and saliency detection
[13, 14]. However, a major drawback of these methods is
that their assumption of approximating the sea edge by a
straight line is often violated in coastal waters and narrow
marinas [5], which leads to poor obstacle detection. To avoid
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this problem, recent works [1–5] built upon probabilistic
graphical models and proposed semantic-segmentation-
based obstacle detectors for USVs, which have achieved
excellent results without the help of the horizon and are
the current state-of-the-art methods in this field. However,
these approaches perform semantic segmentation on a
reduced-size image to accelerate inference, which causes
difficulties in small obstacle segmentation. In addition,
these methods model the semantic structure of marine
scenes using just simple features (e.g., pixel’s positon
and color values), which cannot address the environmental
appearance diversity in the presence of scenery reflections,
boat wakes, and visual ambiguities, leading to poor
segmentation results.

In recent years, numerous semantic segmentation meth-
ods based on deep convolutional neural networks (DCNNs)
[15–22] have been proposed for the scene perception of
unmanned ground vehicles (UGVs). Due to the powerful
feature extraction and representation capability of DCNNs,
these methods significantly surpass conventional hand-
crafted feature-based methods [17]. An increasing number
of semantic segmentation networks have been employed in
autonomous driving and achieved promising results. How-
ever, existing semantic segmentation networks proposed in
UGVs cannot be readily applied for USVs because of many
differences between the USV domain and the UGV domain.
The most prominent difference is that the navigable sur-
face of USVs is nonflat and dynamic and its appearance
is affected by weather conditions compared with that of
UGVs. Moreover, seawater is a reflective surface and the
light from the surroundings may produce complex reflec-
tions on the water. In two recent studies [23, 24], several
semantic segmentation networks that are widely used in
the UGV domain have been evaluated on a challenging
maritime dataset (MaSTr1325), including UNet [25], PSP-
Net [20] and DeepLabv2 [26]. The evaluation results have

shown that these networks perform better than the conven-
tional model-based methods [1, 2], but their performance is
still susceptible to water reflections and visual ambiguities.
Furthermore, most of them have difficulty in segmenting
small-size obstacles. This is because small obstacles con-
tain fewer pixels and the pooling layers in these networks
may remove the features of small objects. In addition, many
state-of-the-art semantic segmentation networks improve
their performance by increasing the number of convolu-
tional layers [17]. As a result, these networks require more
memory to store redundant parameters and more time for
inference, which are inappropriate for real-time obstacle
map estimation of USVs.

Although some progress has been made in marine scene
perception, obstacle map estimation based on computer
vision for USVs still faces several difficulties due to
dynamic and unconstrained environments. (i) Segmenting
small obstacles is notoriously challenging because of their
low resolution and difficulty in distinguishing them from
sea surface disturbances, such as waves, wakes and sea
foam. (ii) Irregular scenery reflection on the navigable
surface of USVs is visually similar to its surrounding
object, which increases the difficulty of water segmentation
and obstacle detection. (iii) When the onboard camera is
directly facing the sun, the illumination variation and sun
glitter substantially reduce the performance of obstacle map
estimation using color features. (iv) Adverse weather, such
as fog and haze, can significantly degrade the visibility of
marine scenes, which hinders the estimation of obstacle
maps for USVs. Figure 1 shows various challenges in
estimating obstacle maps for USVs.

To address these issues, we consider a lightweight
encoder-decoder network (e.g., ENet [16]) as the backbone
and propose a novel multistage feature aggregation and
semantic feature separation network (FASNet) for real-
time obstacle map estimation of USVs (see Fig. 2). More

Fig. 1 Visual diversity in MaSTr1325 [23] ranging from foggy, boat wake, water reflection, sun glitter (top) and various obstacles (bottom)
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Fig. 2 Architecture of our proposed FASNet. Different stage features
from the encoder and decoder of a lightweight backbone network (e.g.,
ENet [16]) are concatenated as the input of the multistage feature
aggregation (MFA) module. In the MFA module, multiscale spatial
and depthwise separable convolutions are applied to capture and fuse

different scale features and context information. A semantic feature
separation (FS) loss computed at the output of the MFA module
enforces the learning of discriminative features, which are further used
to guide the pixelwise prediction. A cross-entropy (CE) loss is also
employed in the final pixelwise prediction to train the network

specifically, an efficient multistage feature aggregation
(MFA) module is proposed to fuse the shallow and deep
features of the backbone at different stages, which aims to
improve the segmentation performance of small obstacles.
To reduce the number of parameters and computational
complexity, multiscale spatial and depthwise separable
convolutions are applied to capture and fuse different-scale
context information in the MFA module. In addition, we
design a new loss function to enforce the separation among
different semantic features, which provides a robust feature
representation in the scenes with environmental reflections,
salient wakes, and visual ambiguities. We evaluated the
proposed FASNet on a challenging maritime segmentation
dataset: MaSTr1325 [23]. The evaluation results showed
that the proposed method achieved better performance than
other state-of-the-art lightweight models. We also validated
that various lightweight semantic segmentation networks
achieved consistent performance improvement when our
MFA module and loss function were adopted. The main
contributions of this work include the following:

1) We proposed an efficient multistage feature aggrega-
tion (MFA) module to capture and fuse different scale
features and context information of the backbone at
different stages.

2) We designed a new loss function to increase the sep-
aration among different semantic features, achieving
a more robust feature representation in highly diverse
marine environments.

3) We presented a novel multistage feature aggregation
and semantic feature separation network (FASNet) for
real-time obstacle map estimation of USVs. In addi-
tion, we reported extensive quantitative and qualitative
evaluation results of the proposed model on a public
challenging segmentation dataset (MaSTr1325).

2 RelatedWorks

Compared with the field of UGVs, camera-based environ-
mental perception in USVs is still a relatively young research
area. Since the obstacles that pose a threat to USVs are gener-
ally located below the horizon line, most conventional meth-
ods estimate a horizon line and then detect obstacles under
the estimated horizon line using various object detection
models (e.g., object classification [10], background model-
ing [11, 12], and saliency estimation [13, 14]). However,
their common assumption that the horizon is approximated
as a straight line is often violated in coastal waters or narrow
marinas, which causes poor performance of obstacle detec-
tion. In addition, these methods that use bounding boxes to
locate objects cannot provide accurate navigable water areas
for collision avoidance in USVs. Moreover, the approaches
proposed in [10, 11, 13, 14] perform obstacle detection with
hand-crafted features, which poses difficulty in address-
ing the appearance diversity of a marine scene with water
reflections, wakes, sun glitter or visual ambiguities.

Several recent works [1–5] have explored semantic
segmentation methods based on a probabilistic graphical
model to obtain obstacle maps for small-sized USVs
without the guidance of the horizon line. In [1], a novel
graphical model was proposed to account for the semantic
structure of marine images observed from USVs. The
model is optimized by an expectation maximization (EM)
algorithm to fit each input image and generate an obstacle
map. This approach has achieved excellent results in
monocular perception of USVs, which can detect not only
obstacles that stand out from the water surface but also
floating flat obstacles. Bovcon et al. [2] extended the
graphical model [1] with inertial measurement information
to improve the segmentation in the presence of visual
ambiguities. In [3, 4], the performance of the graphical
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model proposed in [1] has been enhanced by fusing
inertial measurement data and stereo vision information.
Liu et al. [5] designed a prior estimation network to
enhance the performance of the graphical model [1]. These
methods significantly outperform other related algorithms
with respect to the obstacle perception of USVs and
have achieved state-of-the-art performance. However, these
methods still have drawbacks in the presence of sun
glitter, reflections, and visual ambiguities because these
approaches model the semantic structure of the marine
scene using simple color and position features, which fail to
fully capture the scene appearance diversity.

Due to the powerful feature extraction and representation
capabilities of DCNNs, many researchers have developed
various semantic segmentation methods based on DCNNs
for the scene perception of UGVs [15, 17]. These methods
significantly outperform conventional computer visual
methods on many benchmarks [27, 28]. However, most
state-of-the-art networks that achieve excellent performance
are based on a very deep convolutional backbone (e.g.,
ResNet-101 [29]), such as PSPNet [20], DeepLabv3+ [21],
and EMANet [22], which require a large amount of memory
to store parameters and significant time for inference.
Therefore, these methods can hardly execute in real
time and are not appropriate for obstacle map estimation
in USVs. For the purpose of real-time applications on
mobile platforms with limited computing power, some
efficient semantic segmentation networks are proposed,
including ENet [16], FSSNet [17], ERFNet [18] and
ESNet [19]. These lightweight networks exploit various
solutions (e.g., depthwise separable convolution [30], atrous
convolution [26] and factorized block [17]) to reduce
running time. However, these networks exhibit slightly
lower accuracy than other state-of-the-art deeper networks.
In addition, existing semantic segmentation networks in
UGVs cannot be readily used for USVs because of the
significant environmental differences. For example, the
most obvious difference is that the navigable surface of
USVs is dynamic and affected by weather conditions.
Two recent separate studies [23, 31] have tested the
performances of the semantic segmentation networks that
are widely used in UGVs on several marine datasets.
Both of them have reached a consistent conclusion that
commonly used semantic segmentation networks from
UGVs are susceptible to water reflections and visual
ambiguities. Furthermore, most of these networks are prone
to misclassifying small obstacles as background regions.

3Method

The overall architecture of FASNet is introduced in
Section 3.1. Section 3.2 details an efficient multistage

feature aggregation (MFA) module, and a novel semantic
feature separation (FS) loss is described in Section 3.3.

3.1 Overall Architecture

The overall architecture of our FASNet is shown in Fig. 2.
In consideration of the limitations of USVs with respect
to computing power, we choose an off-the-shelf efficient
semantic segmentation network (e.g., ENet [16]) as the
backbone of our network. In practice, the backbone network
can be replaced by other lightweight networks with an
encoder-decoder structure, such as FSSNet [17], ERFNet
[18] and ESNet [19]. The encoder in the backbone network
spatially reduces the feature maps and captures high-level
semantic information, while the decoder gradually recovers
the detailed object boundaries and upsamples the feature
maps from the encoder to the same size as the original image.

In the marine scenes observed from USVs, various small
obstacles may appear on the preplanned path and threaten
the safe navigation of USVs. However, existing semantic
segmentation networks exhibit an unfavorable performance
in small obstacle segmentation. The backbone network
computes a feature hierarchy layer by layer. The convolu-
tional blocks at the different stages of the backbone pro-
duce feature maps with different spatial resolutions, which
inherently contain multiscale context information [32]. To
improve the performance in small obstacle segmentation,
we propose an efficient multistage feature aggregation
(MFA) module to capture and aggregate multiscale features
from the multistage outputs of the backbone, and then the
feature map computed by the MFA module is used to guide
the final pixelwise prediction. In addition, a novel semantic
feature separation (FS) loss computed at the output of the
MFA module enforces learning of discriminative features,
which leads to a robust feature representation in the pres-
ence of visual ambiguities, salient reflections or wakes. In
the final pixelwise prediction, a cross-entropy (CE) loss is
also employed to train the network.

3.2 Multistage Feature Aggregation (MFA) Module

For semantic segmentation of marine images, visual informa-
tion needs to be processed on various scales. As discussed
in Section 3.1, the feature maps of a deep convolutional
network at different stages inherently contain multiscale
context information. Empirically, combining low-level fea-
ture maps with high-level feature maps helps improve the
segmentation performance of small objects. Therefore, we
design an MFA module to fuse the different stage feature
maps of the backbone network. To reduce the amount of
parameters and computational complexity, multiscale spa-
tial and depthwise separable convolutions are applied to
process the features on various scales in the MFA module.
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Fig. 3 Multistage feature aggregation (MFA) module. Note that each
convolution is followed by a batch normalization layer [33] and
rectified linear unit (ReLU) function [34]. Conv: standard convolution,
DSConv: depthwise separable convolution, FSConv: fully separable
convolution (spatial and depthwise separable convolution), FC: fully
connected layer, K: the filter size of a convolution. Residual: the
convolutions in the standard residual bottleneck

Figure 3 shows the framework of the MFA module,
consisting of two stages: (i) multiscale feature capture and
fusion, and (ii) SE-ResNet refinement. In the first stage
of the MFA module, the multistage feature maps from
the backbone network are resized and concatenated as a
single feature map. The channel depth of the concatenated
feature map is reduced by a 1 × 1 convolution. To better
capture the structure and context information of the image,
inspired by [35], five parallel convolutions with different
scales (e.g., 1 × 1, 3 × 3, 5 × 5, 7 × 7, and 9 × 9) are
performed on the feature map. Different from the method
in [35] that adopts several parallel standard convolutions,
we spatially decompose the standard convolution into two
single dimensional convolutions to reduce the number of
parameters and running time. For example, a k × k standard
convolution can be replaced by a sequence of k×1 and 1×k

convolutions, which is termed spatial separable convolution.
As a result, this replacement makes the parameters k

2
times less than those of the standard convolution, while
maintaining the equal size of the receptive field. In addition,

similar to [36], depthwise separable convolution [30] is also
introduced in each spatial separable convolution to further
reduce the computation and parameters. This separable
convolution, which considers both the spatial dimensions
and the depth dimensions, is referred to as fully separable
convolution in this paper (see Fig. 4). Following the
parallel multiscale convolutions, a concatenation operation
is applied to merge the output feature maps, and a 1 × 1
dimension reducing convolution is employed to reduce
the depth of the concatenated feature map. Here, the
context information extraction and fusion performed by the
parallel multiscale convolutions and the dimension reducing
convolution can be described as

Xout = δ

(
W ∗

m⋃
i=1

δi

(
W i ∗ Xin + bi

)
+ b

)
, (1)

where Xin denotes the input feature map, W i and bi are the
weight and bias of the i-th scale fully separable convolution
or standard convolution, respectively, and m is the number
of different scale convolutions. W and b are the weight and
bias, respectively, of the dimension reducing convolution
with kernel size 1 × 1. δ denotes the rectified linear
unit (ReLU) activation function [34]. ∗ and

⋃
represent

the convolution operation and the concatenation operation,
respectively.

To better refine the feature map obtained by the parallel
multiscale convolutions, we also add a SE-ResNet module
[37] as the final block of our MFA module. The SE-ResNet
module builds upon a standard residual bottleneck [29] and
inserts a spatial squeeze and channel excitation block to
emphasize attention on the selected channels of the feature
map. The output feature map of the MFA module is added
with the feature map of the decoder to guide the pixelwise
prediction, as illustrated in Fig. 2.

3.3 Enhancing Semantic Features Separation

In coastal waters or narrow marinas, the surrounding
environment and sunlight may be reflected on the dynamic
water surface, which causes significant changes in the
appearance of the water. In addition, the appearance of the
marine scene is greatly affected by unfavorable weather
conditions. In particular, haze or foggy weather will cause
visual ambiguities and make the boundary between sea

Fig. 4 3 × 3 fully separable
convolution decomposes a 3 × 3
standard convolution in the
spatial and depth dimensions.
DSConv: depthwise separable
convolution

3x 1 DSConv 1 x 3 DSConv
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and sky unclear. Due to these challenges in the marine
environment, existing semantic segmentation networks still
encounter difficulties in the obstacle map estimation of
USVs [23]. To enhance the robustness of our network in the
abovementioned challenging scenarios, we design a novel
loss function to enforce semantic feature separation, which
is applied at the output of the MFA module.

Denote X ∈ R
C×H×W as the feature map computed

by the MFA module, where H × W means the spatial
dimension. To facilitate the description, we reshape X

into N × C, where N = H × W . Further, X can be
expressed as X = {xi}i=1:N , where xi ∈ R

C represents
the C dimensional feature vector at pixel i. To estimate
the obstacle map for USVs, networks need to classify each
pixel on an image into three categories: obstacle, water and
sky. Thus, X = {xi}i=1:N can be divided into Xobs =
{xi}i∈Obstacle, Xwat = {xi}i∈Water and Xsky = {xi}i∈Sky

according to the annotated labels Y = {yi}i=1:N , where
yi is the annotated label of pixel i. To encourage different
semantic features to cluster towards their centroids, we
assume a Gaussian mixture model to fit their distributions:

p(xi |Θ) =
3∑

k=1

αkφ(xi |μk, Σk) , (2)

where φ(·|μk, Σk) is a Gaussian kernel. Θ ={μk, Σk}k=1:3
denotes the means and covariances of the three Gaussian
components, which can be computed by Xobs , Xwat and
Xsky . αk is the weight for the k-th Gaussian component,
meeting 0 ≤ αk ≤ 1 and

∑3
k=1 αk = 1. A Gaussian mixture

model (GMM) is a probabilistic model that assumes all the
observed data points are generated from a mixture of a finite
number of Gaussian distributions, which is parameterized
by the mixture component weights and the component
Gaussian parameters [22, 38]. GMM is an unsupervised
learning method for data clustering and data mining. In this
part, GMM is used to fit the learned features and cluster
different semantic features towards their centroids.

Using Bayes’ theorem and the model parameters Θ

and αk , the posterior probability zik that a data point xi

belongs to the k-th Gaussian component can be calculated
as follows:

zik = p(γi = k|X, Θ)

= p(γi = k, xi |Θ)

3∑
l=1

p(γi = l, xi |Θ)

= p(xi |γi = k, Θ)p(γi = k|Θ)

3∑
l=1

p(xi |γi = l, Θ)p(γi = l|Θ)

= αkφ(xi |μk, Σk)

3∑
l=1

αlφ(xi |μl , Σ l)

,

(3)

where γi denotes the label of the i-th data point xi , which is
a latent random variable and holds p(γi = k) = αk .

The posterior zik is a measure of the distance or similarity
between the feature xi and the k-th Gaussian component.
To facilitate the implementation of φ(xi |μk, Σk) in Eq. 3,
we omit the Σk and simply adopt the exponential inner dot
exp(xT

i μk) to replace the Gaussian kernel. In addition, we
also assume that any αk is equal to 1/3. Thus, Eq. 3 can
be implemented as a matrix multiplication plus one softmax
layer:

Z = softmax

(
X

||X||2 · (
μ

||μ||2 )T
)

, (4)

where X ∈ R
N×C is the input feature map, and μ ∈ R

3×C

is the mean matrix which consists of the means of three
Gaussian components. || · ||2 is the L2 normalization for
stability.

By combining (4) and conventional cross-entropy loss,
we propose a novel semantic feature separation loss
function to enforce discriminative representation learning:

Lf s = − 1

N

N∑
i=1

3∑
k=1

yiklogzik , (5)

where zik and yik refer to the estimated posterior probability
and its corresponding ground truth for pixel i. N is the
number of pixels on the feature map X computed by the
MFA module.

For the final semantic segmentation prediction, we
employ a weighted cross-entropy loss Lce to train our
network as follows:

Lce = − 1

M

M∑
i=1

3∑
k=1

wkqiklogpik , (6)

where pik and qik represent the prediction result of FASNet
and its corresponding ground truth, respectively, for pixel
i. M is the number of pixels in the output of FASNet.
wk denotes a class weight for improving FASNet on the
imbalanced training dataset. According to [16, 17], we use
the class weighting scheme:

wk = 1

log(c + p̂k)
, (7)

where p̂k represents the probability of a class, which is
obtained by calculating the weight of each category in the
training dataset. c is an additional hyperparameter. In this
paper, we set c to 1.02 and control the class weights between
1 and 50.

Combining (5) and (6), the total loss of FASNet can be
represented as follows:

LFASNet = Lce + Lf s . (8)
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4 Results

In this section, we evaluate the effectiveness of FASNet
on a challenging marine dataset (MaSTr1325). The dataset
and evaluation metrics are described in Section 4.1.
The implementation details are provided in Section 4.2.
Ablation studies and a comparison with other state-of-the-
art networks are given in Sections 4.3 and 4.4, respectively.
In addition, we also compare FASNet with other state-of-
the-art conventional methods in Section 4.5. In Section 4.6,
we apply our MFA module and FS loss function to existing
lightweight models for wide applicability evaluation.

4.1 Dataset and EvaluationMetrics

The performance of our FASNet was evaluated on a challeng-
ing marine semantic segmentation dataset (MaSTr1325)
[23], which consists of 1,325 fully annotated images with
a resolution of 512 × 384 pixels. These images were cap-
tured by a small-sized USV over a two-year span, covering
a range of realistic conditions encountered in a coastal
surveillance task. In particular, attention was paid to include
various weather conditions and times of day to ensure the
variety of the captured dataset. Each image was manually
annotated by human annotators with three categories (obsta-
cle, water and sky). Some examples are shown in Fig. 1.
To train and evaluate semantic segmentation networks, we
randomly divided the dataset into 905 images for train-
ing, 120 images for validation, and 300 images for testing.
Similar to [23], we applied central rotations of ±{5, 15}
degrees on each image (see Fig. 5) to increase the com-
plexity of the dataset. We refer to this expanded dataset as
augmented-MaSTr1325.

To quantitatively evaluate the accuracy of our proposed
FASNet and other state-of-the-art deep segmentation net-
works, several conventional semantic segmentation evalu-
ation metrics were chosen, including per-class intersection
over union (per-class IoU), mean intersection over union
(mIoU) and frequency weighted intersection over union
(FWIoU) [39]. In the quantitative comparison with other
state-of-the-art conventional methods on the task of water
segmentation, we adopted classical pixel-based metrics [40]
to evaluate the segmentation performance, including preci-
sion, recall and F1-measure. In addition, we also employed
the number of parameters, the number of floating point
operations (FLOPs) and the average execution time per
frame (ΔT ) to measure the implementation efficiency.

4.2 Implementation Details

All semantic segmentation networks in the evaluation
were implemented in PyTorch and trained end-to-end. For
real-time applications, we adopted lightweight ENet [16]
as the backbone of FASNet. The backbone and other
comparison networks were pretrained on Cityscapes [27].
The convolutional layers in the MFA module were randomly
initialized using the Kaiming method [34]. We used a
learning rate of 0.001 and weight decay of 0.0004. An
Adam optimizer was utilized to iteratively update network
weights in the training with 150 epochs, and the learning
rate was decayed by a factor of 0.2 every 30 epochs. The size
of a mini-batch was set to 8. To avoid overfitting, typical
data augmentations in semantic segmentation networks
were used, including color jittering and random horizontal
flipping. All networks were trained and tested on an
industrial computer with an Intel Core i7-6700K 4 GHz

Fig. 5 An example of data augmentation using central rotation. a Input image. b Rotation augmented variations
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Table 1 Ablation study results on the MaSTr1325 test dataset

Network Backbone MFA FS Per-class IoU (%) mIoU (%)

Obstacle Water Sky

ENet [16] – 90.02 98.88 98.96 95.95

FASNet− ENet [16] � 90.63 98.98 99.01 96.21

FASNet ENet [16] � � 91.77 99.06 99.17 96.67

The best results are highlighted in bold

CPU with 32 GB RAM and an externally connected
NVIDIA GTX1080Ti GPU with 11 GB of memory.

4.3 Ablation Studies

There are two major novelties in our FASNet: the MFA
module and the feature separation (FS) loss. To explore
how each novelty contributes to enhancing the segmentation
performance, we conducted ablation studies on the original
MaSTr1325 dataset, which was randomly divided into
905 images for training, 120 images for validation, and
300 images for testing. Table 1 shows the ablation study
results of FASNet with different settings, in which FASNet
with the FS loss removed is termed FASNet−. As shown
in Table 1, both the MFA and FS loss boosted the
segmentation performance. Compared with the baseline
ENet, the proposed FASNet, which contains the MFA
module and FS loss, achieved a 0.72% mIoU and 1.75%

obstacle-class IoU increase. To better understand the effect
of FS loss, we visualized the feature maps computed by
the MFA module in FASNet− and FASNet and selected
the most activated feature map channels for comparison
in Fig. 6. As shown in Fig. 6, FS loss can significantly
enhance the sharpness of the boundary and the completeness
of different categories, which enables a more discriminative
feature representation.

4.4 Comparison with state-of-the-art deep
segmentation networks

To validate the effectiveness of FASNet, we compared
it with recent state-of-the-art segmentation networks,
including ENet [16], FSSNet [17], ERFNet [18], ESNet
[19], PSPNet [20] and DeepLabv3+ [21]. Considering the
limited computing power of mobile platforms, PSPNet and
DeepLabv3+ adopt ResNet-50 [29] as the backbone. For

Fig. 6 Feature map visualization
of the MFA module in FASNet
and FASNet−. (a) Input image
and its ground truth. (b)
Visualized results in FASNet−.
(c) Visualized results in
FASNet. FASNet− represents
the variant of FASNet without
the FS loss. In comparison,
FASNet with the FS loss can
learn a more discriminative
feature representation in the
complicated marine environment
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Table 2 Quantitative segmentation comparison with various state-of-the-art networks on the augmented-MaSTr1325 test dataset

Network Backbone Per-class IoU (%) mIoU (%) FWIoU (%)

Obstacle Water Sky

ENet [16] – 90.48 98.66 98.71 95.96 97.83

FSSNet [17] – 90.25 98.59 98.70 95.85 97.77

ERFNet [18] – 89.84 98.52 98.64 95.66 97.66

ESNet [19] – 90.07 98.57 98.66 95.76 97.72

PSPNet [20] ResNet-50 [29] 89.37 98.59 98.51 95.49 97.58

DeepLabv3+ [21] ResNet-50 [29] 90.19 98.65 98.66 95.83 97.76

FASNet ENet [16] 92.24 98.88 99.00 96.71 98.24

The best results are highlighted in bold

a fair comparison, all networks were trained and tested on
the augmented-MaSTr1325 dataset using the same learning
scheduler, as detailed in Sections 4.1 and 4.2.

The quantitative evaluation results of various networks
on the augmented-MaSTr1325 test dataset are summarized
in Table 2. As observed from Table 2, our FASNet achieved
the highest accuracy for all 3 classes and achieved the
best results of 96.71% mIoU and 98.24% PWIoU. In
particular, FASNet significantly improved the segmentation
performance for the obstacle category and provided 1.76%
improvement compared with the second-best ENet. The
results demonstrated that the proposed MFA module with
the FS loss function can help the backbone network improve
the segmentation accuracy of marine images, especially for
obstacle regions.

Figure 7 displays representative test images, ground truths,
and the segmentation results of different networks. The quali-
tative comparison revealed that FASNet was more robust
than all other networks under various extreme conditions.
As shown in the first column of Fig. 7, FASNet estimated
the water region more accurately in the presence of
severe environmental reflections, while the other methods
produced false positives. From the second column of Fig. 7,
it can be observed that the other networks performed
poorly in the presence of visual blur, which renders the
extent of the water region significantly oversegmented.
The comparison in the third column of Fig. 7 shows
that our FASNet was better than the other networks at
addressing distinct wakes caused by boats. In these scenes,
the other networks tended to misclassify the wake edges as
obstacles. The performance of FASNet in these challenging
scenes can be attributed to the discriminative feature
representation trained by FS loss. FASNet can effectively
increase the separation among different semantic features,
which enhances the discriminative ability of FASNet in
the presence of environmental reflections, salient wakes,
and visual ambiguities. As observed from the last column
of Fig. 7, our method accurately segmented the small

obstacle from the water region, while several state-of-the-
art models performed poorly. There are two major reasons
for the excellent performance of FASNet in small obstacle
segmentation. The first reason is that the MFA module
in the network can help capture and fuse the context
information of different scale obstacles. The second reason
is that the FS loss can enhance the discrimination between
small obstacles and the background, which improves the
performance improvement of FASNet.

To evaluate the computational performance of FASNet,
we further compared it with other segmentation networks in
terms of model complexity and execution time (see Table 3).
In deep learning, network complexity usually involves space
complexity and time complexity. The space complexity of
a deep learning network refers to the number of parameters
in the network, which is directly proportional to the amount
of memory consumed by the network. Similarly, the time
complexity, which is also referred to as computational
complexity, refers to the number of float-point operations
(FLOPs) that the network needs to perform inference on
a single sample. As shown in Table 3, the parameters
of our FASNet were fewer than the lightweight ERFNet
and ESNet. Although they had comparable FLOPs, our
FASNet was much faster than ERFNet and ESNet. The
discrepancy between the FLOPs and the execution time
is attributable to the notion that the inference time of
a network is also affected by the memory access cost
and degree of parallelism. Compared with the baseline
ENet, FASNet benefited from the application of the fully
separable convolution, and therefore, only increased very
few parameters and FLOPs. The quantitative results (Table 3
last column) showed that our proposed FASNet achieved
an average execution speed of 58 frames per second (fps)
on an NVIDIA GTX1080Ti GPU. Although the speed of
FASNet was slower than that of the baseline ENet, it did not
slow down the overall onboard control system in practice
because the cameras for the MaSTr1325 [23] were limited to
10 fps.
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Input image

Ground truth

FASNet

ENet

FSSNet

ERFNet

ESNet

PSPNet

DeepLabv3+

Fig. 7 Qualitative examples of various semantic segmentation net-
works on the augmented-MaSTr1325 test dataset. It can be seen
that FASNet outperforms other networks in the presence of severe

environmental reflection (see the first column), visual ambiguity (see
the second column), salient wake (see the third column) and small
obstacle (see the last column)

4.5 Comparison with state-of-the-art conventional
methods

We also compared the proposed FASNet with current state-
of-the-art conventional methods: SSM [1] and PEN-SSM [5].
SSM and PEN-SSM both assume a probabilistic graphical

model, which is fitted to each image by iterative expectation
maximization steps and simultaneously classifies pixels into
water and non-water according to the corresponding posterior
distributions. Thus, an online obstacle map for USV can be
obtained. To facilitate comparison, we only evaluated the accu-
racy of these methods for the task of water segmentation.
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Table 3 Comparison of network complexity and average execution time on the augmented-MaSTr1325 test dataset

Network Backbone Parameters (M) FLOPs (G) ΔT (ms)

ENet [16] – 0.37 1.63 10

FSSNet [17] – 0.20 1.59 7

ERFNet [18] – 2.06 11.11 27

ESNet [19] – 1.66 10.15 30

PSPNet [20] ResNet-50 [29] 48.77 138.56 249

DeepLabv3+ [21] ResNet-50 [29] 42.53 142.66 491

FASNet ENet [16] 0.61 14.21 17

The best results are highlighted in bold

The quantitative results of the observed methods for
water segmentation are summarized in Table 4. Although
our proposed FASNet was slightly slower than SSM, it
achieved the highest precision and recall values, along
with the highest F1-measure. In the F1-measure, FASNet
significantly outperformed SSM and PEN-SSM by 10.14%
and 4.46%, respectively. The quantitative comparison
results showed that our method was more reliable than SSM
and PEN-SSM on the task of water segmentation. This was
because the proposed FASNet can effectively learn more
discriminative features from the annotated data, thereby
improving the accuracy of water segmentation. Figure 8
shows a further qualitative comparison of the methods.
Note that SSM and PEN-SSM both performed poorly in
the presence of scenery reflections, visual ambiguities, sun
glitter, and obstacles visually similar to water (see Fig. 8,
first four rows). The reason for the poor performance was
that they relied on pixel’s position and color features, which
failed to correctly address the diversity of a complex marine
scene, resulting in poor water segmentation. In addition,
SSM and PEN-SSM performed water segmentation on a
reduced-size image to accelerate the inference process,
which caused difficulty in small obstacle segmentation (see
Fig. 8 last row). In comparison, our FASNet performed
well in these challenging scenes, which was reflected in the
quantitative comparison results.

4.6Wide Applicability Evaluation

Embedding a backbone trained on related tasks into the
semantic segmentation network for obstacle map estimation
in marine scenes can accelerate the training process
and improve the segmentation performance. Different
backbones in the same network architecture may show
different segmentation performance and efficiency. In
practice, we usually select the most appropriate one from
the existing backbones according to the performance of
the computing device. To adjust the selected backbone to
obstacle map estimation for USVs, it requires a general
technique to help the backbone improve the segmentation
performance while running in real-time. Our MFA module
together with the FS loss function is an efficient plug-and-
play module, which is readily applied to existing lightweight
backbones and renders them more suitable for maritime
obstacle map estimation.

To evaluate the wide applicability of our MFA module
with the FS loss function, we replaced the backbone in
FASNet with various lightweight models, including FSSNet
[17], ERFNet [18], and ESNet [19]. All networks in the
wide applicability evaluation adopted the same learning
scheduler, as detailed in Section 4.2. The training and
testing of the networks were performed on the augmented-
MaSTr1325 dataset. The evaluation results, which are

Table 4 Quantitative comparison with state-of-the-art conventional methods in terms of water segmentation on the augmented-MaSTr1325 test
dataset

Method Backbone ΔT (ms) Precision (%) Recall (%) F1-measure (%)

SSM [1] – 11 82.77 96.82 89.25

PEN-SSM [5] – 21 93.88 96.01 94.93

FASNet ENet [16] 17 99.62 99.17 99.39

The best results are highlighted in bold
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Input image Ground truth FASNet SSM PEN-SSM

Fig. 8 Qualitative comparison of SSM [1], PEN-SSM [5] and our pro-
posed FASNet on the task of water segmentation. The detected water
region is denoted in blue. It can be observed that FASNet is superior to
the conventional methods (SSM and PEN) in the complex scenes with

scenery reflections (see the first row), visual ambiguities (see the sec-
ond row), sun glitter (see the third row), obstacles visually similar to
water (see the fourth row), and small obstacle (see the last row)

shown in Fig. 9, indicate that all networks with the FASNet
framework consistently outperformed the corresponding
baseline networks with significant increases in terms of
mIoU and PWIoU.

5 Conslusion

This paper presented a novel semantic segmentation
network, FASNet, for real-time obstacle map estimation of

Fig. 9 Comparison of a mIoU
and b FWIoU between various
baselines and corresponding
FASNets on the augmented-
MaSTr1325 test dataset. In
comparison, all baseline
networks achieve a consistent
performance increase when
using the FASNet framework
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USVs. The network was evaluated on a public marine scene
dataset (MaSTr1325), which demonstrated that FASNet
outperformed existing state-of-the-art lightweight networks
and achieved 96.71% mIoU, while running over 58 fps. In
particular, FASNet significantly improved the segmentation
performance for the obstacle category and provided 1.76%
higher obstacle-class IoU than the second-best network
(ENet [16]). The applicability evaluation also proved the
effectiveness of the proposed MFA module and FS loss. Our
future work will focus on exploring obstacle map estimation
based on multisensor fusion to expand the application of
USVs at night, and apply the estimation results as feedback
for collision avoidance.
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