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Abstract—This study presents a novel electromagnetic
variable stiffness isolator that achieves bidirectional stiff-
ness regulation, which means that the isolator experiences
a reduced stiffness when the applied current is positive
and an increased stiffness when the opposite current is ap-
plied. In addition, the stiffness variations are equal for two
currents with the same magnitude but opposite polarities.
The proposed isolator can not only ensure the vibration
isolation performance in working frequency zone that is
relatively far from the natural frequency, but also can realize
high-damping-like effect for shock response attenuation,
without introducing any additional damping components
that may complicate the system. The bidirectional stiffness
regulation was realized by combining mechanical springs
with hybrid magnets (permanent magnets and coil wind-
ings). Variation in the overall stiffness of the proposed
isolator occurred when the current was continuously ad-
justed. A prototype of the isolator was designed, fabricated
and then tested with a round displacement step shock at
the base. The theoretical analysis revealed that this device
could be utilized as an active vibration isolator through
certain control strategies. The experimental results proved
the effectiveness of the proposed mechanism in shock
isolation and revealed that it outperforms the conventional
isolator in suppressing the residual vibration.

Index Terms—Shock isolation, variable stiffness, electro-
magnetic mechanism

I. INTRODUCTION

Shock and vibration widely exist in various mechanical
systems, and it is one of the main factors that damages
machines and sensors [1–4]. Typically, shock isolation can be
divided into two categories: isolation of the transient response
and suppression of the residual vibration when the shock ends.
The purpose of the former category is to reduce the overshoot
of the response when the equipment is subjected to a shock
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input, while the later category focuses on how to ensure that
the residual vibration decays rapidly so that the system restore
its steady state quickly [5–7]. A common practice to deal with
the shock input is to introduce additional damper into the
isolation system [8]. But in some application scenarios, when
the isolated equipment requires the isolator to have a natural
frequency that is far from the working frequency (excitation
frequency), the damping and stiffness of the isolation system
should be as low as possible to ensure a better isolation per-
formance within the working frequency zone. However, there
is an inherent shortcoming for such a low-damping system,
namely, the poor performance in attenuating the response for
shock input. This is because the response after shock input
can be essentially regarded as free vibration, which implies
that the isolator is working at the natural frequency. For
such a system that is working near the natural frequency,
larger damping coefficient is more preferable because it can
attenuate the shock response rapidly. In order to cope with this
contradiction, an approach based on variable stiffness has been
proposed. This approach can not only ensure the vibration
isolation performance in working frequency zone that is far
from the natural frequency, but also can realize high-damping-
like effect for shock response attenuation, without introducing
additional damping component/system which may complicate
the entire system.

As a result, isolation systems with high-static-low-dynamic
stiffness (HSLDS) [9–14] or nonlinear negative stiffness [15–
18] have become a promising choice for shock isolation, and
there has been several pioneering works about the potential
of the variable stiffness (VS) systems in isolating shock
input [19, 20]. The basic idea is to switch the stiffness from
one value to another value in a periodic manner to gradually
dissipate system energy [21], and the larger the range of
stiffness regulation, the quicker the dissipation of energy. Con-
ventional VS isolators or strategies usually concentrate on the
VS effect in terms of reducing the overall stiffness by adding
a positive stiffness (PS) in series or connecting a parallel
negative stiffness (NS). For example, Onoda et al. [22, 23]
presented theory of a serial-stiffness-switch system. In the
system, when one spring is closed, the system shows a large
stiffness, and vice versa; Ledezma et al. [24–26] combined
a novel switchable electromagnetic stiffness mechanism with
nylon wires to realize HSLDS; Chen et al. [27] originally
proposed a stiffness switching strategy that switched the
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stiffness between a high-state and a low-state periodically.
The essence of both these studies is to adopt one stiffness for
a particular motion phase and then connect another stiffness
component in series (Onoda et al.) or superpose a negative
stiffness (NS) (Ledzma et al.) if the phase changes.

In this work, however, a novel EVS isolator that can achieve
bidirectional regulation of the stiffness is designed by
combining two mechanical springs with a nesting-type hybrid
magnetic mechanism. This configuration allows the overall
stiffness of the EVS isolator to be increased and decreased
by regulating the magnitude and polarity of the current.
Specifically, if a conventional VS isolator is utilized as a shock
isolator, it can achieve a stiffness scope of [k − kaux, k], where
kaux ≥ 0 is the auxiliary stiffness generated by the VS/EVS
mechanism. However, the proposed design with bidirectional
stiffness regulation can extend this strategy through achieving
a larger stiffness range of [k − kaux, k + kaux].

In our previous work [28], we proposed a tunable stiffness
isolator with compact structure and validated its effectiveness
in vibration isolation. Compared with the previous work, the
originality of this paper is as follows:

1) A new EVS isolator is designed and fabricated, and its
advantage of bidirectional stiffness regulation could be
applied to improve the shock isolation logic compared
with the conventional isolators.

2) The round displacement step (RDS) shock input is re-
produced in the laboratory, and the response is studied
experimentally. To a certain extent, the experimental
results in this paper overcomes the shortage of the related
research in terms of lack of experimental data.

3) Both the effects of the conventional logic and the ex-
tended strategy for residual vibration suppression are
evaluated through the proposed prototype. The results
show that the extended strategy outperforms the conven-
tional strategy by a reduction in the settling time of as
much as 33.7%.

II. SYSTEM DESCRIPTION

A. Prototype design

To design an EVS isolator with bidirectional stiffness regu-
lation, a compact electromagnetic mechanism that can produce
a negative or positive interaction force is designed first. This
novel electromagnetic mechanism consists of two mechanical
springs and a hybrid magnet mechanism comprising four
permanent magnets (PMs) and four coil windings (CWs).
Fig. 1 shows the assembly of the EVS isolator and the
controllable electromagnetic mechanism. All four PMs and the
CWs are placed consecutively in the axial direction. Then, the
PMs are nested into the CWs, which are hollow inside. Four
shaft collars, which are labeled as C1 to C4, are fastened on the
shaft. C2 and C3 are utilized to fix the PMs; The pre-stressed
mechanical spring is installed between the linear bushing and
the shaft collar (C1 or C4). If the shaft moves relative to the
frame and the CWs are energized, an electromagnetic force
generated by the hybrid magnet mechanism and a restoring
force provided by the mechanical springs will exert on the
shaft simultaneously. These two forces may cancel out or
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Fig. 1. Schematic diagram of the EVS isolator. The solid arrows and
dashed arrows correspond to the magnetizing and current directions,
respectively.

TABLE I
STRUCTURAL PARAMETERS AND VARIABLES OF THE SYSTEM.

Structural Parameters
Para. Value unit Definition
m 2.818 kg Mass of the payload.
c 0.037 Ns/mm Equivalent damping.
ks 4.086 N/mm Stiffness of the mechanical spring.
ωn 38 rad/s Natural frequency of the linear system.
T 0.165 s Natural period of the linear system.
R 4.05 Ω Resistance of single coil winding.

Variables
ξ – – Equivalent damping ratio.
pi * – – Fitting parameters.
K1 – – Dimensionless linear stiffness.
Kj * – – Dimensionless nonlinear stiffness.
I – A Excited current of coils.
Y – mm Shock amplitude.
Ŷ – – Dimensionless shock amplitude.
y, x – mm Displacement of the base/payload.
u – mm Relative displacement of the payload.
ŷ, x̂ – – Dimensionless base/mass displacement.
û – – Dimensionless relative displacement of

the payload
β – – Severity parameter.
t, τ – s, – Time/Dimensionless time.
tr – s Rise time.

* i = 1,3,5,7,9, j = 3,5,7,9.

superimpose on each other. All the structural parameters are
listed in Table I.

B. Mechanism of the bidirectional stiffness regulation
Because of the axial symmetry of the proposed EVS iso-

lator, only the axial electromagnetic force is exerted on the
PMs. When the CWs are not energized or the PMs are in their
equilibrium locus, the force exerted on the PMs by the CWs
is zero. In this case, the stiffness of the entire system equals
the stiffness of the mechanical spring. However, the steady
state will be broken by the relative motion between the PMs
and the CWs if the CWs are current-carrying. Specifically, an
auxiliary electromagnetic force will be exerted on the PMs.
The magnitude and direction of this electromagnetic force
depend on the magnitude and polarity of the current. If the
electromagnetic force and the restoring force of the spring are
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Fig. 2. Simulation curves. (a) Electromagnetic forces for various cur-
rents from 1.2 A to -1.2 A with a step of 0.1 A. (b) RSD shock inputs for
various severity parameters β.

opposite in direction, the electromagnetic force will counteract
the restoring force provided by the mechanical springs. As a
result, the resultant force exerted on the PMs reduces, which
means that the overall stiffness of the EVS isolator decreases
as well. On the contrary, if the electromagnetic force and the
restoring force are in same direction, the overall stiffness will
increase accordingly.

III. MODELING THE EVS ISOLATOR

A. Modeling the electromagnetic stiffness

The overall stiffness of the isolator is dependant on the stiff-
ness of the mechanical spring and the electromagnetic mecha-
nism. The electromagnetic stiffness/force can be calculated by
the so called filament method [29, 30]. The principal of this
method is to transfer the PM/CW into discrete current-carrying
filaments equivalently, then calculate the interaction force be-
tween each pair of coils, and finally sum the interaction forces
through a superposition. A detailed calculation procedure has
been given in previous studies [10, 31] and hence is omitted
here. The total electromagnetic force f∗ of the four-magnet-
four-winding configuration can be calculated using

f∗ =
4∑
a=1

4∑
b=1

FCaMb
(1)

where FCaMb
( a, b = 1,2,3,4) denotes the electromagnetic

force between the a-th PM and the b-th CW. With this com-
putation method, the electromagnetic force for the proposed
system can be calculated and is shown in Fig. 2a for various
currents. However, the expression obtained from Eq. 1 is
complicated because it contains elliptic integral and summa-
tion notation [28]. Thus, in order to clearly establish motion
equations and explain the EVS mechanism, we simplify the
expressions of the electromagnetic force by fitting them to a
ninth order polynomial of the form

f∗ =
∑
i

piu
i, (i = 1, 3, 5, 7, 9) (2)

Response
Steady 

position

RSD shock

Initial 

position

During 

shock
After shock

y

x

Response
Steady 

position

RSD shock

Initial 

position

During 

shock
After shock

y

x

Fig. 3. Schematic of the EVS isolator subjected to a shock.

where pis are fitting parameters computed according to the
method of least square fitting, and the fitting order is set to be
ninth order. Ten coefficients, which represent the coefficients
of the polynomial, are obtained. The coefficients for even order
terms are neglected because they are relatively small compared
with odd ones. The fitting results are listed in Table II. Based
on the fitting results, the maximum fitting error is 6 %, which
verifies the reliability and practicality of the fitting.

B. Expression of the RSD shock input
A round displacement step (RDS) shock input, which is

commonly selected as a base shock [32], is considered in this
paper. It can be expressed as

y = Y
[
1− (1 + βωnt) e

−βωnt
]

(3)

where Y denotes the actual amplitude of the RDS shock
input (namely, the maximum displacement of the base) and
ωn =

√
ks/m is the natural frequency of the system when

there is no current in the CWs. In the following sections, for
describing the relationship between the shock amplitude and
the characteristic of the nonlinear system more clearly, the
shock amplitude is non-dimensionalized as Ŷ = Y/L, where
L = 5 mm is the negative stiffness range of the system.

Following Tang et al. [6], β is defined as the severity
parameter that indicates the steepness of the RDS shock, which
equals the ratio of the period of the natural vibration of the
linear isolation system T to twice the rise time tr, namely, β =
T/2tr. The rise time is the time when the displacement reaches
82% of its steady-state value. Shock inputs with different β
values are shown in Fig. 2b, from which one can see that the
steepness of the curve becomes severe with an increase in β.
Eq. 3 can also be expressed in dimensionless form as

ŷ = 1− (1 + βτ) e−βτ (4)

where ŷ = y/Y is the dimensionless base displacement and τ
= ωnt is the dimensionless time [5, 6, 20]. By differentiating
Eq. 4 with respect to the dimensionless time τ , the dimension-
less acceleration of the RDS can be derived as

ŷ′′ = −β2e−β τ (βτ − 1) (5)

C. Motion equation with the RDS shock input
Fig. 3 illustrates the RDS shock applied at the base and

the response of the payload. It is noteworthy that the response
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TABLE II
FITTING PARAMETERS FOR VARIOUS CURRENTS

I/A p1 p1 p1 p1 p1
0 0 0 0 0 0
±0.4 ±1857.66 ∓2.62e+7 ±1.19e+11 ∓2.37e+14 ±1.81e+17
±0.8 ±3715.31 ∓5.24e+7 ±2.39e+11 ∓4.75e+14 ±3.61e+17

of the payload to a RDS shock input is a two-stage process,
namely, during and after the shock. Therefore, the motion
equation can be expressed by a piecewise function by assum-
ing that: during the shock, the acceleration of the base is ÿ
(ÿ 6= 0); after the shock (during the residual vibration), the
acceleration of the base is zero (ÿ = 0, i.e., there is no input
to the isolator). The equation of motion for an isolated payload
with respect to the relative displacement (deformation of the
mechanical springs) u = x - y is given by

mü+ cu̇+ ksu− f∗ = −mÿ (6)

where the dots · denote the derivatives with respect to time t,
ks > 0 denotes the stiffness coefficient of the spring, and c
> 0 denotes the equivalent damping coefficient. Substituting
Eq. 2 into Eq. 6, then collecting the terms that involve u, the
following equation can be obtained

mü+ cu̇+ (ks − p1)u−
∑

j=3,5,7,9

pju
j = −mÿ (7)

In the above equation, u can be nondimensionalized as
û = u/Y ; in addition, since u̇ = Y ωnû

′ and ü = Y ω2
nû
′′

(the primes ′ denote the derivatives with respect to the dimen-
sionless time τ ), one can obtain the dimensionless format of
Eq. 7 as

Y ω2
nû
′′ +

c

m
Y ωnû

′ +
ks − p1
m

Y û−
∑

j=3,5,7,9

pj

m
Y j ûj = −ÿ (8)

Eq. 8 can be further simplified as

û′′ + 2ξû′ +K1û+
∑

j=3,5,7,9

Kj û
j = F̂ (β) (9)

where

ξ =
c

2mωn
,K1 =

ks − p1
ks

,Kj = −pjY
j−1

ks
, û =

u

Y

F̂ (β) =

{
− 1
ω2

n

ÿ
Y = −ŷ′′ , during the shock

0 , after the shock

D. Evaluation of the performance for the proposed sys-
tem

Three indices are utilized to evaluate the shock isolation
performance, and one is adopted to evaluate the residual
vibration suppression performance of the system, they can be
expressed as:
• Maximum absolute acceleration ratio (MAAR) =
|x̂′′|max/|ŷ′′|max.

• Maximum absolute displacement ratio (MADR) =
|x̂|max/ŷmax.

• Maximum relative displacement ratio (MRDR) =
|x̂− ŷ|max/ŷmax.

• Settling time τs, the time required for the response curve
to reach and stay within a range of 5% of the steady
position.

The MAAR and MADR indicate the maximum shock accel-
eration and displacement transmissibility, respectively. To pro-
tect equipment that is sensitive to acceleration/displacement,
the MAAR/MADR should be as small as possible. The MRDR
is also of great importance because it indicates the deformation
of the isolation system. A larger deformation may cause failure
of the vibration isolator and even result in a collision between
the base and the isolated equipment. In order to discuss the
effect more clearly, the MAAR is presented in dB, namely,
20 · lg (|x̂′′|max/|ŷ′′|max). When the shock ends, the settling
time τs is introduced to indicate the mean time between
the beginning of the shock and the payload returning to its
steady position (5% error band). From the perspective of
shock/vibration suppression, a smaller τs is more preferable.

IV. NUMERICAL ANALYSIS

To further explain how the proposed EVS isolator works, we
discuss its application in shock isolation and residual vibration
suppression through numerical simulation in this section. The
response of the system subjected to an RDS shock input is
obtained by solving Eq. 9 numerically utilizing the ODE45
algorithm in MATLAB. The magnitude/polarity of the current
I , the amplitude Ŷ and the severity parameter β of the
RDS shock are key factors that influence the nonlinearity of
the system and hence the shock isolation performance. It is
noteworthy that the direction of the current varies such that
the generated electromagnetic force f∗, the linear stiffness
coefficient K1, and the nonlinear stiffness coefficients Kj (j
= 3,5,7,9) can be positive or negative. All the corresponding
dimensionless stiffness coefficients (both linear and nonlinear)
are calculated through pj listed in Table II. It needs to be
noted: (1) I = 0 A corresponds to a linear/passive system
without VS; (2) with increases in the current magnitude I and
shock amplitude Ŷ , the nonlinear coefficients Kj (j = 3,5,7,9)
increase. Namely, the effect of the current I on the nonlinearity
of the system has the same trend with that of the amplitude
Ŷ of the shock input.

The feature of bidirectional stiffness regulation allows the
EVS isolator to regulate its stiffness characteristics and hence
influence the shock isolation performance such as the MAAR,
MADR and MRDR, the simulated results will be illustrated in
the next section, along with the experimental verifications. In
this section we will concentrate on another typical application
of the bidirectional stiffness regulation, namely, suppressing
the residual vibration when the shock ends. Consider a linear
single degree of freedom (SDOF) mass-spring-damper system.
The regulation strategy for residual vibration suppression can
be stated as: If the payload moves away from its steady
position (uu̇ > 0, pink area in Fig. 4a), the overall stiffness of
the system remains high, i.e., khigh. The maximum potential
energy Vhigh is
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Fig. 4. The schematics of the bidirectional stiffness regulation. (a)
regulation strategy; (b) phase plane plot.

Vhigh =
1

2
khighu

2
max (10)

where umax is the maximum deformation of the EVS mech-
anism. Then, the overall stiffness suddenly switches to a
lower value klow until the payload reaches the steady position
(uu̇ > 0, blank area in Fig. 4a). The maximum potential
energy Vlow at umax in this situation is

Vlow =
1

2
klowu

2
max (11)

Finally, the loss in the potential energy Vloss can expressed
as

Vloss = Vhigh − Vlow =
1

2
∆ku2max (12)

where ∆k = khigh−klow (khigh ≥ klow) implies the range of
the stiffness regulation. During an oscillating cycle, a greater
∆k may result in more loss in the potential energy and hence
a larger decrease in the kinematic energy. In other words,
the greater the decrease in kinematic energy, the quicker the
payload converges to its steady position. More details about
the mechanism of the energy dissipation could be found in
[21]. Thus, generating a large ∆k is the key to improving the
performance of residual vibration suppression.

As mentioned above, one distinctive highlight of this pa-
per is that the capability of bidirectional stiffness regulation
enables the proposed EVS isolator to increase and decrease
its overall stiffness, resulting in a greater ∆k. Based on this
feature, an extended strategy (with respect to the conventional
ones[22–25]) is introduced in this section. The principal
for these two strategies is listed in Table III. Basically,
the conventional strategy can achieve a stiffness range of
[ks − kaux, ks], which corresponds to ∆k = kaux. However,
the extended strategy can realize a larger stiffness range
of [ks − kaux, ks + kaux] due to the bidirectional stiffness
regulation through tuning the current I , corresponding to ∆k
= 2kaux. In fact, Tran et al. [33] have already proposed a
switchable stiffness system. This rather elegant design can
be utilized to realize bidirectional stiffness regulation, but
the effect is different from our proposed one. In his work,
the absolute value of the auxiliary stiffness kaux generated
by equal but opposite currents was unequal. Specifically, the
mechanism proposed by Tran et al. generates −kbig if the
current is I = 0.8 A and ksmall if I = −0.8 A, where

TABLE III
THE PRINCIPAL FOR THE CONVENTIONAL STRATEGY AND THE

EXTENDED STRATEGY

Type Principal

Conventional ke =

{
k

k − kaux
, uu̇ ≥ 0
, uu̇ < 0

Extended ke =

{
k + kaux
k − kaux

, uu̇ ≥ 0
, uu̇ < 0

|ksmall| < |kbig|. Namely, it can realize a stiffness range
of [k − kbig, k + ksmall] (∆k = kbig + ksmall). To further
broaden the stiffness range, a greater current is required to
increase the value of ksmall, which is dangerous and uneco-
nomical due to the heat load by the CWs. This asymmetric
feature limits its stiffness regulation range. For the proposed
EVS isolator, however, the quantities of the generated stiffness
are equal in magnitude for equal but opposite current I . Thus,
in this sense, the proposed EVS isolator can still achieve a
greater stiffness range of [k − kbig, k + kbig] (∆k = 2kbig).

It is clear that a greater ∆k may lead to a quicker
convergence speed or a shorter settling time τs. The effect
of the proposed extended strategy on the residual vibration
suppression is simulated and analyzed in this section. In this
simulation, currents of I = 0 A,±0.4 A and±0.8 A are applied
to generate various ∆k. The payload has an initial velocity of
u̇(0) = 0.15 and an initial displacement of u(0) = 0 at the
start point. The simulation results of the phase plane plot is
shown in Fig. 4b, from which one can see that the trajectory is
getting closer to the original point every oscillation cycle. In
addition, it can also be concluded that the convergence speed
for I = ±0.8 A is the quickest due to the greatest ∆k.

Please note that, in order to maintain the stability of the
bidirectional stiffness regulation, the equivalent/overall stiff-
ness should be greater than zero, because systems with purely
negative stiffness would lose stability under a slight distur-
bance. For our proposed system, the positive definiteness of
the equivalent stiffness is guaranteed by limiting the energizing
current.

V. EXPERIMENTAL VERIFICATIONS AND RESULTS

The experiments conducted below were designed with the
following considerations: (a) to prove the effectiveness of
the EVS isolator in shock isolation and residual vibration
suppression; (b) to show the appreciable benefits of the pro-
posed extended strategy which enables bidirectional stiffness
regulation. Based on these considerations, we first verify
the shock isolation strategy. Then, instead of discussing the
extended residual vibration suppression strategy separately, we
reasonably combine it with the shock isolation strategy from
the perspective of practical application.

A. Experimental setups
Fig. 5 shows the detailed experimental setup for the shock

test. The setup consists of an EVS isolator (see Fig. 1), a
movable plate mounted on two guide tracks, an electromag-
netic switch and a fixed plate. The EVS isolator is fixed
to the movable plate, which can then move together on the
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Fig. 5. Experimental setup.

guide tracks. The free end of the electromagnetic switch is
attached to the movable plate, while the fixed end is mounted
on the fixed plate. Two mechanical springs are nested on
the guide tracks. An electromagnetic force will be generated
when the switch is energized, and this force will compress the
mechanical springs so that the fixed end and free end will be
pulled together. When turning off the electromagnetic switch
and releasing the free end after the experiment begins, the
potential energy stored in the springs will be converted into
kinetic energy of the movable plate. When the movable plate
moves over a period of time, it collides with the shaft holders,
which are fixed with the guide. We mimic the RDS shock as
closely as possible in the way described above.

The acceleration signals for both of the isolated mass
and the movable plate are measured by two PCB 356A17
accelerometers. The acceleration signals are collected by an
LMS SCADAS XS device and are processed by LMS Test
Lab software installed on a PC. The displacement signals are
acquired by two Keyence LK G30A laser sensors and NI 6123
DAQ card. A FPA1000 direct current amplifier is utilized
to energize the CWs. A mini DC power supply QJ3003A
is adopted to supply current for driving the electromagnetic
switch, which is also selected as the trigger signal for data
acquisition.

B. Measurement of properties

The characteristics of the system, such as the natural
frequency and damping coefficient, were measured experi-
mentally through the transmissibility of the proposed system.
The transmissibility can be calculated by the ratio of the
acceleration signals for the payload to that of the movable plate
in frequency domain. Transmissibility curves of the proposed
system with different currents are shown in Fig. 6, through
which one can see that the natural frequency of the proposed
system depends on the magnitude and polarity of the current. It
is noteworthy that a positive current means the EVS isolator
will generate a negative EVS, which leads to a decrease in
the overall stiffness of the system, and the converse is also
true. Thus, with an increase in the current I (from negative to
positive), the natural frequency of the proposed system shifts
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Fig. 6. Measured transmissibility curves for currents varying from - 0.8
A to 0.8 A with a step of 0.2 A.

TABLE IV
EQUIVALENT RESONANCE FREQUENCY MEASURED EXPERIMENTALLY

Current/A -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8
Resonance/Hz 8.8 8.2 7.6 7.0 6.1 5.3 4.4 3.5 2.9

to the lower frequency band, specifically, from 8.8 Hz to 2.9
Hz, as listed in Table. IV.

For the proposed system, the damping coefficient c for
passive/linear system is evaluated by the half-power bandwidth
method and is calculated to be 0.037 Ns/mm (corresponding to
a damping ratio ξ of 17.24%). Another interesting note is that
the transmissibility peak values also decrease as the current
increases. This is mainly because the equivalent damping ratio
ξ increases with the decrease in the overall stiffness of the
system. The response speed for the EVS isolator is also crucial
for the performance, and it can be evaluated by measuring the
time delay between the input signal and response of the CWs.
For the proposed EVS isolator, the delay is about 11 ms, which
can satisfy the engineering application requirement. Another
characteristic of the proposed system is its power consumption,
which can be calculated through the current and the resistance
of the CWs. For the proposed system, the maximum power is
about 10.37 W when current I = 0.8 A (room temperature).

C. Shock isolation through stiffness regulation
Shock isolation experiments are carried out with the experi-

mental platform shown in Fig. 5. By restricting the movement
of the movable plate before colliding with the shaft holders
and adjusting the deformation of the springs, the platform can
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Fig. 7. RSD shock inputs measured by the displacement sensor for
different severity parameters β.
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TABLE V
CHARACTERISTICS OF THE EXPERIMENTAL RDS SHOCK INPUT

No. 1 2 3 4 5 6 7 8
Rise time/s 0.147 0.121 0.112 0.090 0.076 0.064 0.060 0.055
β 0.56 0.68 0.74 0.92 1.09 1.29 1.38 1.51
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Fig. 8. Comparison of the experimental and analytical results. The
curves with the asterisk (*) / circle (◦) / triangle (4) are experimental
values, while the other curves are analytical results for each panel. The
results for 0.8 A, 0.4 A, and 0 A are illustrated in green, red, and blue,
respectively.

output different RDS shock signals, which will be applied to
the EVS isolator. In this experiment, eight comparative tests
are conducted with different shock intensities, as shown in
Fig. 7. Detailed characteristics of the test shock signals are
listed in Table V, such as rise time and the severity parameter
β. The rise times of the shock inputs vary from 0.147 s to
0.055 s, corresponding to the severity parameter β increasing
from 0.56 to 1.51.

By analyzing and summarizing the eight tests, the MAAR,
MADR, and MRDR of the isolator are illustrated in Fig. 8
to further show the validity of the theoretical analysis and
simulation. By observing Fig. 8(a), one can conclude that
a greater current is preferable for reducing the acceleration
response for both cases since the MAAR is the lowest when I
= 0.8 A. This is due to the low-pass filtering effect introduced
by a large positive current (negative EVS). That is to say, if
the equivalent natural frequency of the system is low (a large
positive current is applied), the system can act as a strong
low-pass filter with large damping ratio, such that the effect
of the shock is reduced. The displacement response is much
more complicated. For the MADR shown in Fig. 8(b), both the
simulation and experimental results show that passive system
is superior to the EVS system when β is relatively small. The
reason is that if a non-zero and positive current is applied, a
negative VES is generated and reduces the overall stiffness of
the system. Then, the displacement response becomes greater
than that of the passive system because the system is softer in

this case. As β increases, however, the nonlinearity becomes
strong, and the nonlinear stiffness counteracts the effect of the
negative VES, which leads to a higher overall stiffness and
hence a smaller displacement response. Fig. 8(c) shows that
the MRDR also depends on the current with a given amplitude
and β. Since the MRDR represents the deformation of the
isolator, it can be expected that a system with a lower overall
stiffness may experience a larger deformation. However, this
law is only obvious when β is relatively small. With an
increase in β, systems with and without current begin to
converge due to the nonlinearity caused by increasing β. Both
the experiment and simulation have shown this trend.

In conclusion, the performance index should be decided
first to choose appropriate isolator parameters which meet the
requirements and provide better performance. From the point
of view of reducing the acceleration response, it is beneficial
to adopt a positive current (negative EVS). For limiting the
deformation of the EVS isolator, a negative current (positive
EVS) is preferable since it increases the anti-deformation
ability of the system. The case of decreasing the absolute
displacement response of the payload is conditional on the
shock severity β, and a positive current is effective for most
β values in minimizing the MADR.

D. Residual vibration suppression through bidirectional
stiffness regulation

To further describe the appreciable benefits of the proposed
EVS isolator, the strategies of stiffness regulation for shock
isolation and residual vibration suppression are combined and
tested in this section. As stated previously, regulating the
stiffness is limited by certain conditions and purposes. Without
loss of generality, we chose to focus on minimizing the accel-
eration response, i.e., the MAAR, in this section. On one hand,
acceleration-sensitive equipment is widely used in industry. On
the other hand, the overresponse of the displacement caused
by a shock input can be mitigated by some specific methods,
such as adding a position limiting device. More concretely,
we apply a positive current during the shock to decrease the
acceleration response and adopt the extended strategy after the
shock to shorten the settling time. It should be noted that when
we say during the shock, it denotes the time duration in which
the payload oscillates from the initial position until it arrives
at the steady position for the second time (see Fig. 3). This is
because the maximum response usually occurs in this phase,
so it is reasonable to implement the shock isolation strategy.
After this period, attenuating the residual vibration isolation
becomes the main focus, the residual vibration suppression
strategy is then applied.

Since the RDS shock input is unknown in practice, and
hence the steady position, it is impractical to judge the end of
the shock by monitoring the position of the payload. However,
the velocity of the payload reaches its maximal absolute value
at steady position in a period. Besides, the velocity is easy
to obtain through differentiating the position of the payload.
Therefore, we use the velocity of the payload, instead of its
position, to detect the end of the shock. Specifically, the mo-
ment when the velocity of the payload reaches the maximum
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Fig. 9. Flow diagram for the combination of the strategies for shock
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Fig. 10. Experimental acceleration response of the payload with the
conventional strategy. Blue solid line: I = 0 A; red dashed line: I = 0.4
A; green dash-dotted line: I = 0.8 A.

absolute value for the second time is defined as the end of the
shock. Before this moment, the strategy for shock isolation
is activated; after this moment, the system soon turn to the
strategy for residual vibration suppression. The corresponding
flow diagram is shown in Fig. 9, which is programmed by the
visual programming language LabVIEW. Firstly, the position
of the payload is collected by a laser displacement sensor with
a sampling rate of 1000 Hz. Secondly, the velocity is obtained
by differentiating the collected displacement signal at the same
sampling rate, and then applied as the basis of the bidirectional
regulation of stiffness.

To reveal the advantages of the proposed extended strategy,
both the conventional and extended strategies are tested and
compared in the following. First of all, the conventional
strategy cited and modified by Ref. [22–25] is tested with our
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conventional strategy. The pink and blank areas mean positive current
is applied (-kaux is added) and no current, respectively. (a) I = 0 A; (b)
I = 0.4 A; (c) I = 0.8 A.
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Fig. 12. Experimental acceleration response of the payload with the
extended strategy. Blue solid line: I = 0 A; red dashed line: I = ± 0.4 A;
green dash-dotted line: I = ± 0.8 A.
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Fig. 13. Experimental displacement response of the mass with the
extended strategy. The pink area corresponds to a positive current being
applied (-kaux is added), the green area corresponds to a negative
current being applied (+kaux is added), and the blank area corresponds
to no current. (a) I = 0 A; (b) I = ± 0.4 A; (c) I = ± 0.8 A.

proposed prototype, and the results are shown in Fig. 10 and
Fig. 11, in which the pink and blank areas mean a positive
current I is applied (an auxiliary stiffness -kaux is added) and
no current (no auxiliary stiffness), respectively. It can be seen
in Fig. 10 that the acceleration response is reduced during the
shock, because the stiffness regulation strategy is adopted so
the maximum acceleration response is suppressed. When the
shock ends, the conventional strategy begins to take effect.
With the increase in the current I , ∆k increases; hence, the
settling time τs decreases accordingly. Specifically, the results
are 28.0 at 0 A, 20.5 at 0.4 A, and 17.8 at 0.8 A, as shown
in Fig. 11. In conclusion, the conventional strategy can obtain
decrease τs by 36.4% relative to that of a passive system.

For a comparison, the results of the extended strategy are
shown in Fig. 12 and Fig. 13. Similarly, with the application of
the extended strategy, the acceleration response illustrated in
Fig. 12 is reduced during the shock as expected. Furthermore,
the proposed extended strategy can achieve a shorter settling
time τs than the conventional strategy, namely, 17.1 at 0.4 A
and 11.8 at 0.8 A. This corresponds to a decrease of 57.9%
compared to that of a passive system and a decrease of 33.7%
compared to that of the system with the conventional strategy
at I = 0.8 A. It should be pointed out that the alteration
of stiffness varies frequencies of time responses. However,
such frequency variation is relatively small since the stiffness
of the system is repeatedly weakened and strengthened in a
sequential way shown in Fig. 13.
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VI. CONCLUSION

A novel VES isolator for shock isolation was designed and
fabricated. The VES mechanism generates both negative and
positive stiffnesses that can be superposed with the stiffness
of the spring. In other words, the mechanism allows the
overall stiffness of the system to increase and decrease by
changing the magnitude and polarity of the exciting current,
which results in bidirectional stiffness regulation and hence
a wider range of stiffness variation. Based on this feature,
a shock isolation strategy and an extended residual vibration
suppression strategy are proposed. For shock isolation, the
effect of the stiffness regulation strategy is tested by applying
an RDS shock input to the base. For residual vibration
suppression, both strategies are combined and tested. The
experimental results reveal that the proposed isolator not only
outperforms the passive isolator in terms of shock isolation but
also outperforms the isolator with the conventional strategy in
terms of residual vibration suppression.
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