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Abstract

Recently, spatially constrained mixture model has become the mainstream method

for the task of vision‐based obstacle detection in unmanned surface vehicles (USVs),

and has shown its potential of modeling the semantic structure of the marine en-

vironment. However, the expectation maximization (EM) optimization of this model

is quite sensitive to initial values and easily falls into a local optimal solution in the

presence of significant rolling and pitching in rough seas. In addition, existing

methods based on spatially constrained mixture model are susceptible to false

positives in the presence of sun glitter. In this paper, a prior estimation network

(PEN) is proposed to improve the mixture model, which together enable reliable

monocular obstacle detection for USVs. We develop a weakly supervised E‐step to

train the PEN for learning the semantic structure of marine images and estimating

initial class priors in obstacle detection. To mitigate the influence of poor initial

parameters on the convergence of EM optimization, we use the priors estimated by

the PEN to calculate the initial parameters of the mixture model and automatically

adjust the hyper priors on the semantic components in the mixture model. The

output of the PEN is also applied to set the probability values of the outlier com-

ponent in the mixture model, aiming to reduce false positives caused by sun glitter.

Experimental results show that our approach outperforms the current state‐of‐the‐
art monocular method by 15% improvement in sea edge estimation and a 3.3%

increase in F‐score on the marine obstacle detection data set, as well as 69.5%

improvement in sea edge estimation and a 39.2% increase in F‐score on our data set,

while running over 40 fps.
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1 | INTRODUCTION

In recent decades, there has been considerable focus on the develop-

ment of unmanned surface vehicles (USVs) due to the advantages of

small size, high mobility, good concealment, and low cost (Benjamin,

Leonard, Curcio, & Newman, 2006; Liu, Zhang, Yu, & Yuan, 2016).

At present, USVs are widely used in oceanographic research, co-

ordinated rescue, electronic warfare, reconnaissance, and patrolling

missions (He, Wang, Dai, & Luo, 2019; R. Zhang et al., 2014; Zhao, Li, &

Shi, 2016; Zheng & Feroskhan, 2017). All of the missions listed above

require USVs to operate autonomously in highly diverse environments.

However, various obstacles may appear on a preplanned path during
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navigation. Thus, it is necessary for a practical USV to have an onboard

logic used for detecting potentially dangerous obstacles and helping

control systems adjust and modify the planned route. To enhance the

safety of USVs, an emphasis on obstacle detection is of paramount

importance.

There are a variety of sensing modalities available for USVs to

observe the surroundings, including radar, sonar, LIDAR, and visual

sensors (Liu et al., 2016). In particular, vision‐based obstacle detection

has become a more popular choice in recent years. One reason for this

is that visual sensors can provide richer details of targets than other

range sensors, which is helpful for improving the environmental per-

ception ability of USVs. Another reason is that cameras are small, in-

expensive, and low in power consumption. These characteristics make

them suitable for small USVs that have limitations of payload and

power consumption. In addition, it is difficult for the commonly used

radar or LIDAR to detect flat or small objects in the marine environ-

ment, such as debris, floating wood, plastic bottles, and emerging scuba

divers (Bovcon, Perš, & Kristan, 2017; Kristan, Kenk, Kovačič, & Perš,

2016). Moreover, the advances in graphical processing units (GPUs) and

multi‐core processing enable real‐time performance of computer vision

approaches for obstacle detection (Sivaraman & Trivedi, 2013). How-

ever, there exist challenges associated with computer vision in marine

environments of USVs, such as visual blur due to unfavorable weather

conditions (haze and fog), reflections of the surrounding environment in

water, glitter, or large highlighted water areas caused by sunlight,

dynamic water surface, and varying backgrounds. In this paper, we

focus on systems where cameras are available and seek to provide

real‐time obstacle detection for USVs.

1.1 | Related work

Obstacle detection for USVs using cameras is still a relatively young

research area, especially compared with the field of unmanned ground

vehicles (UGVs). In recent years, several vision‐based methods (Bloisi,

Previtali, Pennisi, Nardi, & Fiorini, 2016; Bovcon & Kristan, 2018;

Bovcon et al., 2017, 2018; Kristan et al., 2016; Shi, Jin, & Zhang, 2018;

Wang, Wei, Wang, Ow, Ho, and Feng, 2011; Wang, Wei, Wang, Ow, Ho,

Feng, & Lubing, 2011; Wang et al., 2012; Y. Zhang, Li, & Zang, 2017)

have been proposed to solve the problem of obstacle detection in USVs.

Most of them (Bloisi et al., 2016; Shi et al., 2018; Wang, Wei, Wang, Ow,

Ho, and Feng, 2011; Wang, Wei, Wang, Ow, Ho, Feng, & Lubing, 2011;

Wang et al., 2012; Y. Zhang et al., 2017) first detect the horizon line and

then search for potential obstacles under the guidance of the estimated

horizon line using background modeling (Y. Zhang et al., 2017), object

classification (Bloisi et al., 2016), and saliency (Shi et al., 2018;

Wang, Wei, Wang, Ow, Ho, and Feng, 2011; Wang, Wei, Wang, Ow, Ho,

Feng, & Lubing, 2011; Wang et al., 2012) based methods. However,

their assumption of approximating the sea edge to a straight horizon

line is often violated in coastal waters or in marinas because the sea

edge at that location is no longer a straight line. In addition, the

methods (Bloisi et al., 2016; Shi et al., 2018; Wang, Wei, Wang, Ow, Ho,

and Feng, 2011; Wang, Wei, Wang, Ow, Ho, Feng, & Lubing, 2011;

Wang et al., 2012) use edge detection approaches to extract the hor-

izon, which are quite sensitive to widely distributed noise and strong

interference edges from sea waves or land, eventually resulting in poor

obstacle detection.

To prevent the above problems, some works (Bovcon & Kristan,

2018; Bovcon et al., 2017, 2018; Kristan et al., 2016) explored semantic

segmentation methods based on probabilistic graphical model to detect

obstacles for USVs without the guidance of the horizon line. In Kristan

et al. (2016), a novel graphical model was proposed to account for the

three semantic regions of marine images captured from USVs: sky at the

top, haze or land in the middle, and water at the bottom of the image.

More specifically, the method assumed a mixture model with three

Gaussian components for the three dominant semantic regions and a

uniform component for the outliers and adopted a Markov random field

(MRF) framework to enforce spatial consistency. An expectation‐
maximization (EM) algorithm was used for estimating model parameters

and generating a water segmentation mask. All blobs of non‐water pixels
inside the water region were treated as obstacles. This approach did not

assume a straight water edge and achieved state‐of‐the‐art results on a

marine obstacle detection data set (MODD). In Bovcon et al. (2017), an

improved probabilistic graphical model for monocular obstacle detection

was presented. This model was an extension of Kristan et al. (2016) by

incorporating the boat tilt measurements from the onboard inertial

measurement unit (IMU) to improve the performance in the presence of

visual ambiguities. In the works (Bovcon & Kristan, 2018; Bovcon et al.,

2018), the graphical model (Bovcon et al., 2017) was extended to stereo

obstacle detection. However, the approaches (Bovcon & Kristan, 2018;

Bovcon et al., 2018, 2017) all require extra IMU sensors for support,

which increases cost and power consumption.

Recently, a number of approaches based on deep convolutional

neural networks (DCNNs) have been proposed for scene perception of

UGVs, including object detection (X. Chen et al., 2016; X. Chen, Ma,

Wan, Li, & Xia, 2017; Lee, Kim, Park, Cui, & Kim, 2017) and semantic

segmentation (Alvarez, LeCun, Gevers, & Lopez, 2012; L.‐C. Chen,

Papandreou, Kokkinos, Murphy, & Yuille, 2017; Levi, Garnett, Fetaya, &

Herzlyia, 2015; Oliveira, Burgard, & Brox, 2016; X. Zhang et al., 2019).

Due to the strong feature extraction and integration capabilities of

DCNNs, these methods are able to achieve excellent performance in

practice. However, because of many differences of the environment

between UGVs and USVs, DCNNs cannot be directly applied to USVs.

The most noticeable difference is that the navigable surface of USVs is

dynamic and non‐flat, and its appearance varies more significantly due

to the influence of weather conditions. In addition, DCNNs are notor-

iously hungry for data; however, there is a lack of large‐scale publicly

available annotated data sets captured from USVs for training object

detection networks or semantic segmentation networks, making

DCNNs less frequently used in the field of USVs.

1.2 | Our approach

Up to now, the semantic segmentation model (SSM) proposed in

Kristan et al. (2016) stays to be a state‐of‐the‐art monocular obstacle
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detection method for USVs. It significantly outperforms other re-

lated methods. However, the EM optimization of this kind of method

based on mixture model is quite sensitive to initial values (Yang, Lai,

& Lin, 2012). The initial parameters of the three Gaussian compo-

nents of SSM are simply computed from three vertical regions

{0, 0.2}, {0.2, 0.4} and {0.6, 1}, written in proportions of the image

height. Such assumption on region splitting for initialization is often

violated because of significant rolling and pitching in rough seas,

resulting in over‐ or under‐segmentation of the water region. In

addition to the drawback in the initialization of EM algorithm, SSM

also has difficulty in suppressing severe background noise (e.g., sun

glitter) while highlighting foreground obstacles similar to the back-

ground. The main reason is that it sets the values of the uniform

component for the outliers at all pixels to the same probability

Figure 1.

In this paper, we build upon the spatially constrained mixture

model of SSM (Kristan et al., 2016) and propose a prior estimation

network (PEN) to provide prior information for improving the mix-

ture model, which together enable reliable obstacle detection in

USVs. We develop a weakly supervised E‐step to train our PEN for

learning the semantic structure of marine images taken from USVs

and estimating initial class priors in practical application. The pro-

posed learning method significantly reduces the time and cost of

annotation work. Different from the state‐of‐the‐art SSM, which

defines three regions for constructing the initial Gaussian compo-

nents, we apply the priors estimated by PEN to calculate the initial

Gaussian parameters of the mixture model and automatically adjust

the hyper priors over the mean values of the Gaussians. It greatly

improves the robustness of semantic segmentation in the case of

image jitter because of significant rolling and pitching in rough seas.

Through training from a weakly supervised data set, PEN is able to

learn the structure of the three dominant semantic regions and

model the outliers. Thus, the probability values of the outlier com-

ponent in the class priors estimated by PEN vary from pixel to pixel,

and the outlier regions have higher probability values than other

regions. To improve the problem of SSM in suppressing severe

background noise (e.g., sun glitter) and detecting obstacles similar to

the background, we take advantage of the preliminary discriminating

power of our network (PEN) and apply the outlier component of the

network output to set the probability values of the uniform com-

ponent at all pixels. The experimental results show that our algo-

rithm achieves better performance than the state‐of‐the‐art SSM,

both in the sea edge estimation and obstacle detection.

In summary, the main contributions of this paper include:

• We present a novel semantic segmentation method for monocular

obstacle detection in the marine environment based on spatially

constrained mixture model which is initialized by a PEN.

• We propose an efficient PEN and develop a weakly supervised

E‐step to train the network for learning the semantic structure of

marine images from weakly annotated data.

• We offer extensive quantitative and qualitative performance

evaluations of the proposed method on a publicly available

MODD and our data set.

2 | PEN

In this section, we introduce an efficient deep neural network

architecture named the PEN, which is used to predict initial class

priors for the spatially constrained mixture model. The task of PEN

belongs to dense prediction, which predicts every pixel of an image.

In the field of deep learning, many networks for dense prediction

improve their performance by increasing the depth of the network.

However, it will greatly increases running time and memory as a

result of redundant parameters. To meet the real‐time requirement

of obstacle detection, we use the same dilated convolution as

ENet (Paszke, Chaurasia, Kim, & Culurciello, 2016) and FSSNet

F IGURE 1 The outline of our obstacle detection approach. PEN, prior estimation network [Color figure can be viewed at
wileyonlinelibrary.com]

214 | LIU ET AL.

http://wileyonlinelibrary.com


(X. Zhang et al., 2019) to reduce the number of parameters while

keeping as much accuracy as possible. Due to the lack of a large, fully

supervised data set from USVs to train convolutional neural net-

works (CNNs) and inspired by the EM algorithm, we develop a novel

weakly supervised learning method for training our network from

weakly annotated data for reducing the time and cost of annotation.

2.1 | Network architecture

The architecture of PEN is visualized in Figure 2 and detailed in

Table 1. It adopts an asymmetric encoder‐decoder structure. The

encoder stage contains an initial block, which is shown in Figure 3a.

In addition, we use the same continuous factorized block and con-

tinuous dilated block as FSSNet to extract features in the encoder

stage. The role of the decoder is used for upsampling the features

from the encoder to the same size as the input image and outputting

class prior distribution for each pixel through the softmax function.

In our network, we refer to the basic building block of ResNet

(He, Zhang, Ren, & Sun, 2016) as the bottleneck block (see

Figure 3b). There are two branches in the bottleneck block that are

separated from the input. One branch called identity shortcuts

directly connects the input and output, which can speed up the

convergence of deep networks and help training. Another branch

consists of three convolutional layers with kernel sizes of

× ×1 1, 3 3 and ×1 1. The dimension of the feature map is reduced

by the first ×1 1 convolutional layer and then increased by the

second layer. Thus, the ×3 3 convolutional layer has smaller input

and output dimensions, which significantly reduces the number of

parameters. In addition, each convolution layer is followed by a batch

normalization (Ioffe & Szegedy, 2015) and PReLU (He, Zhang, Ren, &

Sun, 2015) layer.

The factorized block and the dilated block in the PEN are both

modified from the bottleneck block. The factorized block replaces

the ×3 3 convolution in the bottleneck block with two stacked

asymmetric convolutions ( × ×1 3, 3 1), which is equivalent to sliding

a two‐layer network with the same receptive field as in the ×3 3

convolution. It greatly reduces the number of parameters and im-

proves training speed. In our network, we apply four consecutive

F IGURE 2 Overall architecture of the prior estimation network [Color figure can be viewed at wileyonlinelibrary.com]

TABLE 1 Network architecture of prior estimation network

Stage Name Block type Output sizea

Encoder Initial block × ×64 64 16

Block1 Downsampling × ×32 32 64

Factorized × ×32 32 64

Factorized × ×32 32 64

Factorized × ×32 32 64

Factorized × ×32 32 64

Block2 Downsampling × ×16 16 128

Dilated r = 2 × ×16 16 128

Dilated r = 3 × ×16 16 128

Dilated r = 5 × ×16 16 128

Dilated r = 2 × ×16 16 128

Dilated r = 3 × ×16 16 128

Dilated r = 5 × ×16 16 128

Decoder Block3 Upsampling × ×32 32 64

Bottleneck × ×32 32 64

Bottleneck × ×32 32 64

Dual Attention × ×32 32 32

Block4 DUpsampling × ×64 64 4

Softmax × ×64 64 4

aOutput sizes are given for an example input of × ×64 64 3.
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factorized blocks on Block1 of the encoder to extract low‐level
features. The dilated block uses a ×3 3 dilated convolution with a

dilation rate to replace the ×3 3 convolutional filter in the bottle-

neck block. The dilated convolution can help to expand the receptive

field while keeping the network small‐scale and shallow. To ease the

gridding problem of dilated convolutions and look wider, different

dilation rates are adopted in each dilated block. We choose three

stacked dilated blocks as a group and set their dilation rates to 2, 3,

and 5. We apply six consecutive dilated blocks on Block2 of the

encoder, as shown in Table 1.

We insert a maxpooling‐convolutional layer in the identity

shortcut branch and apply a ×2 2 convolution with stride 2 to re-

place the first ×1 1 convolution in the bottleneck block. This mod-

ified bottleneck is used as a downsampling block, which is shown in

Figure 4a. Similarly, we replace the ×3 3 convolution of the bot-

tleneck block with a deconvolution layer and insert a convolution

with a kernel size of ×1 1 and a DUpsampling (Tian, He, Shen, & Yan,

2019) layer in the shortcut branch. This changed bottleneck block is

used as the upsampling block (see Figure 4b). DUpsampling is a data‐
dependent upsampling, which allows almost arbitrary feature ag-

gregation, and thus, a better feature aggregation can be leveraged to

improve the upsampling performance. In Block3 of the decoder,

we adopt a dual attention module (Fu et al., 2019) to adaptively

integrate local features with their global dependencies and provide a

better feature representation. At the end of the decoder, a softmax

layer is assigned to obtain the initial prior distribution for each pixel.

2.2 | Weakly supervised learning

Because of the lack of publicly available, fully supervised data

sets to train our network, we constructed a weakly annotated

data set. The data set comprises 2,185 marine images. Most of

the images were captured from our Jinghai VIII USV (see

Section 4 for details) in the coastal waters of Qingdao and

Shanghai, China. To prevent the proposed network from over-

fitting in modeling, we also selected a few of images from MODD

(Kristan et al., 2016), SMD (Prasad, Rajan, Rachmawati, Rajabally,

& Quek, 2017) and the Internet for increasing the complexity of

the data set. For each image in the data set, we manually ex-

tracted lines from the three dominant semantic regions, and re-

corded all pixels in these lines by category (see Figure 5).

Furthermore, three Gaussian distributions were computed from

the recorded pixels, forming observed components

(a) (b)F IGURE 3 Initial block and bottleneck
block. (a) Initial block. (b) Bottleneck block. A
rectangle represents a convolution with
kernel size ×1 1 or ×3 3. m and m/4 denote
the number of convolution filters, and Concat
presents concatenate operator

(a) (b)

F IGURE 4 Downsampling block and
upsampling block. (a) Downsampling block.
(b) Upsampling block. S denotes stride in a
convolutional layer, which is a metric for
regulating the movement of a convolutional
filter
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μΘ = Σ
={ },k k k

obs obs obs

1:3
where μ and Σ denote the mean and cov-

ariance of a Gaussian, respectively. Compared with fully su-

pervised semantic segmentation approaches, which require

precise polylines or polygons to mark target boundaries in data

sets, our labeling method only samples a few straight lines per

image instead of polylines or polygons, which lessens the burden

of annotation.

Following the notation from Kristan et al. (2016), we regard each

pixel i in an image as an observed feature vector =y x y c c c[ , , , , ]i i i i i i
T1 2 3 ,

where x y( , )i i denotes the pixel's position and c c c( , , )i i i
1 2 3 denotes the

corresponding color values. Thus, an image is represented as an array

of values = =Y y{ }i i M1: , where M is the number of pixels in the image.

We describe each pixel with a four‐component mixture model con-

sisting of three Gaussians and a uniform component. Inspired by the

EM algorithm, we only employ the E‐step of the EM algorithm to

obtain the ground truth of each image and propose a weakly su-

pervised E‐step for training our network, in which the per‐pixel class
priors treated as ground truth are computed by

ϕ μ α
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where ϕ μ⋅∣ Σ( , ) are Gaussian distributions that model the three

dominant semantic regions, and ⋅( ) is a uniform distribution cor-

responding to the outliers. μ Σ
={ },k k k

obs obs

1:3
are observed Gaussian

parameters from weak annotations. In our settings, the uniform

distribution at each pixel is set to a low positive constant value

ε = × −1 10 15. αik denotes the prior probability when the class of the

i‐th pixel is k , which is set as

α
ε

ε
=
⎧
⎨
⎩

× − =

=

⎞

⎠
⎟

k

k

(1 ) 1: 3

4.
ik

1

3 (2)

In network training, we estimate the per‐pixel class priors πi
GT

from the weak annotations using (1), then treat these estimated

priors as ground truth and employ the training procedure, as

illustrated in Figure 6. To train PEN, a new loss function for an image

is defined as

∑∑=
×

⎡
⎣
‐ − − ⎤

⎦
= =

( )π πL
M

π π( *, )
1

4
log 1 * ,GT

i

M

k
ik ik

GT

1 1

4

(3)

where = =π π* { *}i i M1: is the prediction result of PEN. In Section 3,

π* is used for initializing the mixture model; thus, it is also written

as πinit in our paper.

2.3 | Implementation details

Our network is implemented based on PyTorch and trained end‐to‐
end, pixel‐to‐pixel. Kristan et al. (2016) noted that good obstacle

detection is achievable on an image larger than ×50 50 pixels, so we

rescale original images to ×64 64 pixels and use these reduced‐size
images as input to our network. An Adam optimization algorithm

(Kingma & Ba, 2014) is adopted to train our network. We randomly

initialize all convolutional layers by drawing weights from a Gaussian

distribution
×

(0, )
k c

2
2 , which is described in He et al. (2015). Here,

k denotes the filter size of the layer, and c is the number of output

channels of the layer. The probability of dropout is set to 0.3. We use

a learning rate of 0.001 and a momentum of 0.9. The learning rate is

decayed by a factor of 0.1 every 50 epochs. The size of a mini‐batch

F IGURE 5 Some results of manual annotation. The red lines in the images are extracted from the sky region, the green lines from the middle
region, and the blue lines from the water region. The pixels in these lines are used for calculating Θobs [Color figure can be viewed at
wileyonlinelibrary.com]

F IGURE 6 Prior estimation network training using weak
annotations [Color figure can be viewed at wileyonlinelibrary.com]
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is set to 32. The network is trained from scratch on a NVIDIA

GTX1080Ti GPU in 120 epochs.

According to the data splitting strategy reported in

Borovicka, Jirina, Kordik, and Jirina (2012), we randomly divide

our weakly annotated data set into 1,585 images for training, 200

images for validation, and 400 images for testing. First, we

downsample the images from ×512 512 to ×64 64 and then

train our network on the training data set and validate on the

validation data set. Finally, the performance of our network is

evaluated on the test data set.

3 | AUGMENTED MIXTURE MODEL

We assume a mixture model consisting of three Gaussian distribu-

tions for modeling the three dominant semantic regions and a uni-

form distribution for the outliers. Following the notation in Section 2,

the probability of the i‐th pixel feature vector yi can be written as

ϕ μ∑∣Θ = ∣ Σ +
=

y π y yp π π( , ) ( , ) ( ) ,i
k

i k k ik i i
1

3

4 (4)

where ϕ μ⋅∣ Σ( , )k k is a Gaussian kernel, and ⋅( ) is a uniform dis-

tribution. μΘ = Σ ={ , }k k k 1:3 denotes the means and covariances of

Gaussian components. = =π π{ }i i M1: denotes class priors for all pixels.

The ith pixel label xi is an unobserved random variable governed by

the class prior = … …π π π π[ , , , , ]i i ik i1 4 with = =π p x k( )ik i .

To encourage segmentation into three vertically stacked

semantic regions, SSM defines a set of static hyper priors over

the Gaussian means in (4) for all images. However, the spatial

centers of Gaussian distributions are not constant in different

images, it is not appropriate to define static hyper priors for all

images. Therefore, we apply the output of PEN to calculate the

initial Gaussian parameters μΘ = Σ
={ },init

k
init

k
init

k 1:3
and treat them

as hyper priors φ0 over the Gaussian means in the mixture model,

that is, φ ϕ μ μΘ∣ = ∏ ∣ Σ
= ( )p ( ) ,k k k

init
k
init

0 1
3 . Here, the initial Gaussian

parameters Θinit are calculated from the initial class priors πinit

(which are estimated by PEN) and the observed features of all

pixels =y{ }i i M1: , which can be written as

μ =
∑

∑

=

=

yπ

π
,k

init i
M

ik
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i

i
M

ik
init

1

1

(5)
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To make segmentation smooth, the priors = =π π{ }i i M1: and

posteriors = =P p{ }i i M1: over the pixel class labels are both treated

as random variables that form a MRF to model spatial

dependencies between image pixels, where the components of

pi are defined as

φ

∑

∑

= = ∣ Θ

=

⎧

⎨

⎪
⎪

⎩

⎪
⎪

∣ = Θ

∣ = Θ +
=

∣ = Θ +
=

⎞

⎠

⎟
⎟
⎟
⎟

=

=

y π

y

y y

y

y y

p p x k

p x k π

p x l π π
k

π

p x l π π
k

( , , , )

( , )

( , ) ( )
1: 3

( )

( , ) ( )
4.

ik i i

i i ik

l i i il i i

i ik

l i i il i i

0

1

3
4

1

3
4

(7)

MRF is a set of random variables having a Markov property

described by an undirected graph, which provides a powerful and

formal way to account for spatial dependencies between image

pixels (Li, 2009). Like Diplaros, Vlassis, and Gevers (2007), the MRF

of the priors in our model is approximated by ≈ ∏ ∣πp p π π( ) ( )i
M

i Ni ,

and πNi is a mixture distribution over the priors of the neighbors of a

pixel i, which is determined by λ= ∑
∈ ≠

π πN j N j i ij j,i i
, where λij is a fixed

positive weight, and for each pixel i , λ∑ =
∈ ≠

1j N j i ij,i
holds. The con-

ditional density ∣p π π( )i Ni represents the potentials in the MRF, which

are defined as ∣ ∝ −p π π E π π( ) exp( ( , ))i N i N
1

2i i with the exponent de-

fined as = ∥ +E π π D π π H π( , ) ( ) ( )i N i N ii i , where the term ∥D π π( )i Ni is the

Kullback‐Leibler divergence and H π( )i is the entropy. The divergence

term ∥D π π( )i Ni is a similarity measure of the priors between the ith

pixel and its neighbors, which penalizes the difference between πi

and πNi and constrains neighboring pixels to have the same class

labels. The entropy term H π( )i constrains the class prior πi to be as

informative as possible. Similarly, the posterior over P is approxi-

mated as φ∣ Θ ∝ ∏ −
=

P Y π p pp E( , , , ) exp( ( , ))i
M

i N0 1
1

2 i , where pNi is de-

fined similar to πNi . Thus, the following joint probability density

function is derived:

φ φ φ

φ∑

Θ ∣ = ∣ Θ ∣Θ Θ∣
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⎣
⎢ Θ∣

− +
⎤

⎦
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y π

p p

p p p p p

p
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( , , , ) ( , , , ) ( , ) ( ) ( )

exp log ( , , )

1

2
( ( , ) ( , )) .

i

M

i

i N i N

0 0 0

1
0

i i

(8)

Due to the coupling between ∕π πi Ni and ∕p pi Ni , the optimiza-

tion of (8) is not straightforward. Following the derivations

reported in Kristan et al. (2016) and Diplaros et al. (2007), we

introduce auxiliary priors =s{ }i i M1: and posteriors =q{ }i i M1: to

decouple them, leading to an EM‐like algorithm for maximizing

(8). In the E‐step, we maximize (8) over si and qi , assumingΘ and π

are fixed. This gives

ξ

ξ

= ∘

= ∘

= +

= +

+

+
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(9)

where t indicates the iteration step and ∘ denotes the Hadamard

product. ξsi
and ξqi

are normalization constants. Here, p s,N Ni i , and

qNi are the distributions defined in the same spirit as πNi . In

practice, the neighborhood priors are determined by the fol-

lowing convolution λ= ⋅⋅π π *N kk , where λ is a small discrete

Gaussian kernel (e.g., ×3 3) with its central element set to zero

and its elements summing to one.
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In the M‐step, we fix si and qi and maximize (8) over Θ and π :
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where we define β = ∑
=

+q̂k i
M

ik
t

1
( 1) and Λ = ⎡

⎣
Σ + Σ ⎤

⎦
+ − −

−

( ) ( )k k
t

k
init( 1) 1 1 1

.

The expectation‐maximization (EM) algorithm (Diplaros et al.,

2007; Moon, 1996) aims to find maximum a posteriori (MAP) esti-

mation of parameters in latent variable models. The EM iteration

alternates between performing an expectation (E) step and a max-

imization (M) step. The E‐step evaluates the expectation of the log‐
likelihood using the current parameter values and the observation.

The M‐step then provides a new estimate of the parameters.

3.1 | Initialization

The above EM‐like algorithm requires initial parametersΘinit and πinit

to perform iterative optimization. In fact, the performance of the EM

algorithm is easily affected by poor initial values and falls into the

local optimal solution. In SSM (Kristan et al., 2016), the initial para-

meters of Gaussian components at the first frame are simply com-

puted from three regions split by the ratios {0, 0.2}, {0.2, 0.4}, and

{0.6, 1} in the image height direction. However, the assumption on

region splitting is often violated because of boat inclination at

turning maneuvers or boat tilting forward and backward. Although

the continuity of sequential images is applied to improve the problem

for the intermediate frames, SSM still cannot handle the case where

the area of obstacles under the sea edge is too large. Because the

pixels in the large obstacles will cause the Gaussian parameters of

water component calculated by the above assumption to be in-

accurate. To solve this problem, we propose a PEN to predict initial

class priors for all pixels πinit and then calculate the initial Gaussian

parameters μΘ = Σ
={ },init

k
init

k
init

k 1:3
using (5) and (6). From Figure 7,

we can see that the initial Gaussian parameters estimated by our

method are better than that of SSM in the presence of significant

rolling. In addition, unlike SSM, which initializes the priors on

the three Gaussian components to equal values and the prior on the

uniform component to a low constant value, we directly apply the

output of PEN as initial class priors πinit to speed up the convergence

of the EM algorithm. The EM procedure for fitting the mixture model

to the input image is summarized in Algorithm 1. In our settings, EM

is considered to be convergent when either of the following condi-

tions is met: i) the maximum number of iterations is reached, which is

empirically set to 10; and ii) ∑∣ − ∣∕ <+π π N 0.01t t( 1) ( ) , where N is

the number of elements of π .

Algorithm 1 EM for semantic segmentation

Initialization:
1. Initialize the priors =π π( )init (0) using the output of PEN.
2. Initialize the Gaussian parameters Θ =Θ( )init (0) according to (5)

and (6).
3. Assign Θinit to the weak priors φ0.

E‐step:
4. Calculate the pixel posteriors ⋅p k

t( ) using (7) and the current

estimates of π t( ) and Θ t( ).
5. Calculate new auxiliary priors ⋅

+ŝ k
t( 1) and posteriors ⋅

+q̂ k
t( 1) according

to (9).
M‐step:
6. Calculate the new priors +π t( 1) and Gaussian parameters Θ +t( 1)

using (10).

7. Repeat steps 4 to 6 until convergence.

3.2 | Implementation details

The above EM algorithm is performed on a reduced‐size image of

×64 64, and then we rescale the posterior map to the original image

size. The reduced size is set to meet the detection of small obstacles

that present danger to the USV. The uniform distribution y( )i in (4) is

defined over all image pixels. The value of the uniform distribution has a

great impact on outlier detection. If the value is too small, it is not

conducive to detecting obstacles that are less different from the sur-

rounding water region. Conversely, if the value is too large, it is easy to

detect fragmented glitter regions as obstacles when the boat is directly

F IGURE 7 Visualization of the spatial part
of the initial Gaussian components. (a)
Semantic segmentation model and (b) our
approach [Color figure can be viewed at
wileyonlinelibrary.com]
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facing the sun. Specifically, it is not a good idea to detect different

images using the same uniform distribution. To solve the problem, we

use the outlier component of πinit to set the values of the uniform

distribution for all pixels. It is more flexible than SSM, which sets the

value of the uniform distribution at each pixel to the same probability.

The mixture model with PEN is fitted to each image through the

EM algorithm, and the smoothed posterior distribution q̂ik across the

four semantic components for each pixel is eventually estimated. As

seen from (9), q̂ik takes into account the posteriors of the neighborhood

pixels, which tends to make neighboring pixels have similar posteriors.

Therefore, the semantic segmentation result obtained by q̂ik is

smoother than that obtained by pik . According to the result of

qargmax ˆk ik , we classify each pixel into one of the four classes and

obtain a labeled image. Moreover, all pixels that do not correspond to

the sea component are regarded as part of an obstacle. In our experi-

ments, all obstacles within the connected water region are located by

bounding boxes, and the sea edge is used to specify the range of water.

4 | EXPERIMENTS

In this section, we denote our SSM with a PEN (Algorithm 1) as PEN‐
SSM. The experiments were divided into two parts. In the first part,

we evaluated the performance of PEN on our weakly annotated test

set to demonstrate accurate and real‐time prior estimation. In the

second part, we analyzed how various improvement elements of

PEN‐SSM affect its performance and compared it to SSM. All ex-

periments were performed on a desktop PC with an Intel Core

i7‐6700K 4 GHz CPU with 32 GB RAM, with an externally connected

NVIDIA GTX1080Ti GPU with 11 GB of memory.

4.1 | Evaluation of PEN

To evaluate our proposed network, we added a softmax layer to both

ENet (Paszke et al., 2016) and FSSNet (X. Zhang et al., 2019) as the

output layer and compared them with our network. For a fair compar-

ison, we trained all networks on the ×64 64 images using the same

learning scheduler. In addition, we reported our results using the fol-

lowing metrics, where N is the sample number, and v̂i and vi denote the

predicted value and the ground truth value of the ith sample,

respectively:

i. Mean absolute error (MAE)

∑= ∣ − ∣
=

N
v vMAE

1
ˆ ,

i

N

i i
1

(11)

ii. Mean squared error (MSE)

∑= −
=

N
v vMSE

1
( ˆ ) ,

i

N

i i
1

2 (12)

iii. Root mean squared error (RMSE)

∑= −
=

N
v vRMSE

1
( ˆ ) ,

i

N

i i
1

2 (13)

where the metrics (MAE, MSE, and RMSE) are error metrics,

meaning that the lower the value, the better the performance.

4.1.1 | Results

Table 2 shows the performances of different methods on our weakly

annotated test set, which contained 400 images (see Sections 2.2 and

2.3 for details). As we can see from Table 2, our network achieved

120 fps on the test set, which was slightly slower than the best

counterpart (FSSNet). Aside from the running speed and the para-

meters, our network achieved the lowest error.

4.2 | Evaluation of obstacle detection

To demonstrate the performance of PEN‐SSM, we experimented on

a public marine scene data set (MODD; Kristan et al., 2016) and our

own data set. We set SSM (Kristan et al., 2016) as a baseline because

it is one of the most accurate and fastest obstacle detection algo-

rithms in USV. During the operation of USVs, SSM needs to use the

optimized parameters in the previous frame to guide the processing

of the current frame. Specifically, it utilizes the parameters of the

converged model from the previous time‐step for the initialization of

the EM algorithm in the current time‐step. To compare and evaluate

the detection performance of a single‐frame image, we implemented

a variant of SSM, which we denoted by SSM(S). In contrast to SSM,

the SSM(S) does not use the continuity of sequential images in the

videostream for initialization of Gaussian components. In addition,

we implemented two variants of our approach to analyze how much

each improvement contributes to the final performance. We denoted

the two variants by PEN‐SSM(P) and PEN‐SSM(U). PEN‐SSM(P) and

PEN‐SSM(U) both use the output of the PEN network to obtain the

TABLE 2 Comparison of different networks on the test set

Network Parameters fps MAE MSE RMSE

ENet 0.37M 102 0.1630 0.0132 0.1150

FSSNet 0.20M 125 0.1658 0.0130 0.1142

PEN 0.23M 120 0.1453 0.0099 0.0994

Note: The bold value represents the best score under each evaluation

metric.

Abbreviations: MAE, mean absolute error; MSE, mean squared error;

RMSE, root mean squared error.
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initial Gaussian parameters for implementing EM iterations. Differ-

ent from PEN‐SSM, PEN‐SSM(P) does not employ the output of PEN

as the initial class priors πinit in the EM procedure. Specifically, the

class priors over all pixels in PEN‐SSM(P) is initialized to equal

probabilities for the three Gaussian components, while the prior on

the uniform component is set to a low constant value (e.g.,

× −7.9 10 15). In contrast to PEN‐SSM, which uses the outlier com-

ponent of πinit to set the values of the uniform distribution for all

pixels, PEN‐SSM(U) adopts the same method as SSM to set the value

of the uniform distribution at each pixel to a constant, for instance,

= ∕ ×y W H( ) 1 ( )i where W and H denote the width and height of

an image. PEN‐SSM(U) and PEN‐SSM are the same otherwise.

4.2.1 | Data sets

We evaluated PEN‐SSM on two maritime obstacle detection data

sets: MODD and our own marine image data set (MID).

MODD: This data set consists of twelve video sequences for marine

scene obstacle detection that were captured from a small 2.2m USV.

There are 4,454 fully annotated images with a resolution of ×640 480

pixels. The first ten videos in this data set were acquired under normal

conditions with different backgrounds and obstacles. The last two videos

were captured when the USV was directly facing the sun, causing large

amount of fragmented glitter or large highlighted areas on the water. In

addition, facing the sun also caused significant changes in the contrast

and color of the images, posing challenges to the visual algorithm. Images

in the data set have a distinctive visual structure: sea in the lower part,

sky in the upper part, and haze or land in the middle. The sea may contain

obstacles, such as boats, plastic bottles, buoys, and even a diver. In the

data set, obstacles are separated into large and small obstacles, which are

annotated by bounding boxes. Large obstacles are those that straddle the

horizon and span both the visual area of the sea and the area of the sky

or shore. The small obstacles are those that are visually fully enclosed

with the sea from all sides. This data set also provides the landmarks of

the horizon for each image.

MID: The MID1 contains eight video sequences for marine obstacle

detection. There are 2,655 labeled images with a resolution of

×640 480 pixels in the data set, which were captured from our Jinghai

VIII USV (see Figure 8). The USV is 2.7m long and adopts two‐propeller
electric propulsion that has the advantages of high thrust and flexible

steering. It can reach a maximum speed of seven knots. There are two

industrial computers carried on the USV. One is mainly responsible for

automatic navigation and obstacle avoidance, and the other is used for

image acquisition and processing. A high‐definition camera with a ∘50

field of view is mounted on the vehicle approximately 1m above the

water surface. The data set was acquired in the coastal waters of

Qingdao and Shanghai, China, over several months at different times of

the day. As we can see from Figure 9, the first frames of Sequence 1∼5

violate SSM's assumption on region splitting due to the boat's attitude

changes while SSM assumes three fixed vertical regions split by the

ratios {0, 0.2}, {0.2, 0.4}, and {0.6, 1} to initialize the Gaussians of SSM.

Sequences 6 and 7 were acquired in yellow waters. The images in the

last sequence were captured under severe weather, resulting in a

blurred transition from the sea to sky. The data set contains various

objects (see Figure 10) and covers a range of different realistic condi-

tions that coastal USVs encounter, including water reflections of the

surrounding environment, visual blur caused by unfavorable weather

conditions, salient waves, low illumination, sun glitter, and horizon tilt

due to waves and USV motion. Like MODD, obstacles in this data set

are also separated into large obstacles (those that straddle the water

edge) and small obstacles (those that are fully surrounded by water).

The distribution of the annotated size of small and large obstacles is

shown in Figure 11. In addition, this data set also provides ground truth

data for the horizon.

4.2.2 | Evaluation metrics

In our experiments, we adopt the same evaluation metrics as Kristan

et al. (2016). There are two distinct challenges that USVs face: (1) sea

edge detection and (2) obstacle detection. Therefore, the evaluation

protocol is designed to reflect the above challenges. The former is

measured by the root mean square error (RMSE) of the sea edge

position and its standard deviation over all sequences (μ σ,edg edg). The

latter is measured via the efficiency of small obstacle detection,

including precision (Prec), recall (Rec), F‐score (F), and the number of

false positives per frame (αFP).

4.2.3 | Results

The results of quantitative comparison on the MODD and MID are

summarized in Tables 3 and 4. In terms of the sea edge detection

performance, our model (PEN‐SSM) and its two variants are superior

to SSM and SSM(S). Among them, PEN‐SSM achieves the best re-

sults, while SSM(S) is the worst. As we can see from the second

F IGURE 8 Jinghai VIII USV [Color figure can be viewed at
wileyonlinelibrary.com]

1https://github.com/aluckyi/MID.
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column of Tables 3 and 4, the proposed PEN‐SSM outperforms the

original SSM by 15% on the MODD and 69.5% on the MID. Com-

pared with SSM(S), the sea edge detection performance of our ap-

proach on the MODD and MID increased by 39.3% and 71.4%,

respectively. The comparison results show that our method is more

reliable than the original SSM and its variant SSM(S) in the sea edge

detection. The reason for this is that our proposed PEN can effec-

tively learn the semantic structure of marine images from weakly

annotated data and provide more accurate initial values for EM

optimization, thus avoiding over‐ or under‐segmentation of the wa-

ter region when the boat is rolling and pitching significantly. From

Figure 12d and Figure 13a–c, we can see that SSM and SSM(S)

perform poorly in the sea edge detection when images violates their

assumption of region splitting or there are oversized obstacles in the

water. The results in Figure 13f show that our method performs

better than SSM and SSM(S) under unfavorable weather conditions.

On the task of obstacle detection, our PEN‐SSM achieves the

highest precision and the lowest number of false positives per frame,

along with the highest F‐score. The excellent performance of our

PEN‐SSM is due to the fact that the initial Gaussian parameters ob-

tained from PEN are more accurate in the presence of significant rolling

and pitching than those calculated from three fixed regions predefined

by SSM, and in suppressing sun glitter, the uniform component de-

termined by PEN for modeling the outliers is more flexible than that of

SSM. In our experiments, the results of SSM(S) are the worst on both

the MODD and the MID, which indicates that SSM has poor detection

performance for single‐frame images. As seen from Table 3, the preci-

sion and recall of PEN‐SSM on the MODD are 1% and 4.8% higher,

respectively, than those of SSM, resulting in a 3.3% increase in the

F‐score. The gap between SSM and our PEN‐SSM is greater on the

MID. As shown in Table 4, compared with SSM, the precision of

PEN‐SSM increases by 52.8%, the recall rate increases by 24.9%, and

the F‐score increases by 39.2%. One reason for this is that the poor

initial Gaussian parameters cause the EM procedure of SSM to fall into

local minimum when detecting an image that violates its assumption of

region splitting (see Figure 13a). Another reason is that the oversized

obstacles under the sea edge make the initial Gaussian parameters of

the water component inaccurate (see Figure 13c). As seen from

F IGURE 9 Images selected from the marine image data set (MID). The first frame in each video sequence is shown in the odd row [Color
figure can be viewed at wileyonlinelibrary.com]
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Tables 3 and 4, PEN‐SSM(U) achieves the highest recall, but the false

positive rate increases, resulting in a lower F‐score than PEN‐SSM.

Moreover, we find that the F‐score of PEN‐SSM(U) on the MODD is

close to that of PEN‐SSM, but it is significantly lower than PEN‐SSM on

the MID. This proves that it is more robust to use the outlier component

of the output of PEN for setting the values of the uniform distribution

than to use a constant. Like SSM and SSM(S), PEN‐SSM(U) is more prone

to detecting sun glitter as obstacles than PEN‐SSM (see Figures 12c and

13d), thus increasing the false positive. In terms of the performance of

the sea edge and obstacle detection, PEN‐SSM(P) and PEN‐SSM have

little difference, but the latter requires significantly less time than the

former. This is because PEN‐SSM directly applies the output of PEN as

initial class priors to accelerate the convergence of the EM algorithm.

Figure 14 shows results of SSM and our PEN‐SSM under dif-

ferent extreme conditions, including large highlighted areas, water

reflections, heavy cloudy background and low illumination. From

Figure 14a,b, it can be seen that SSM is susceptible to large highlight

areas and water reflections, making the extent of the sea region

significantly underestimated and causing false obstacle detection. In

comparison, our method outperforms SSM under such conditions

although it slightly underestimates the water region. From the re-

sults shown in Figure 14c,d, it can also be seen that SSM in heavy

cloudy and low illumination conditions fails by grossly overestimating

the water region because water region and land in those conditions

are visually similar. Due to the accurate priors provided by PEN, our

method is superior to SSM. To further assess whether there is a

significant difference between PEN‐SSM and SSM in sea edge esti-

mation, we recorded the average RMSE values of the sea edge es-

timation of PEN‐SSM and SSM on each video in the MODD and MID

data sets, respectively, and obtained two sets of the sea edge errors.

We then performed a Friedman test on the two sets of data and

obtained a p value of 0.0017. Similarly, we also performed a Fried-

man test to the average F‐scores of obstacle detection by PEN‐SSM
and SSM on each video in the MODD and MID data sets, and ob-

tained a p value of 0.0253. Since both p values are less than 0.05, the

results indicate that there were significant differences between PEN‐
SSM and SSM in sea edge estimation and obstacle detection.

The average processing time of our PEN‐SSM per frame is 19ms

on the MODD and 21ms on the MID. The computation and application

of PEN decrease the speed of the algorithm by approximately 40%.

Although the speed of PEN‐SSM is slower than SSM, it does not slow

the overall onboard control system in practice because the frame rate

of the camera mounted on the USV does not exceed 15 fps.

4.2.4 | Failure cases

To gain further insight into the limitations of the proposed

method, we show two addition failure cases in Figure 15.

F IGURE 11 Distributions of bounding box areas of large and
small obstacles [Color figure can be viewed at
wileyonlinelibrary.com]

TABLE 3 Results of various methods on the marine obstacle
detection data set (MODD)

Method μ σ( )edg edg Prec Rec F αFP t*

PEN‐SSM 0.017 (0.008) 0.909 0.809 0.853 0.032 19

PEN‐SSM(P) 0.018 (0.009) 0.908 0.804 0.850 0.033 22

PEN‐SSM(U) 0.017 (0.009) 0.891 0.818 0.851 0.059 19

SSM 0.020 (0.011) 0.900 0.772 0.826 0.050 10

SSM(S) 0.028 (0.015) 0.876 0.748 0.802 0.067 9

Note: The bold value represents the best score under each evaluation

metric.

*t denotes the average processing time in ms.

TABLE 4 Results of various methods on the marine image data
set (MID)

Method μ σ( )edg edg Prec Rec F αFP t*

PEN‐SSM 0.018 (0.017) 0.978 0.798 0.867 0.008 21

PEN‐SSM(P) 0.020 (0.018) 0.969 0.797 0.863 0.009 25

PEN‐SSM(U) 0.018 (0.017) 0.759 0.817 0.771 0.082 21

SSM 0.059 (0.028) 0.739 0.639 0.623 0.105 11

SSM(S) 0.063 (0.027) 0.640 0.623 0.609 0.153 10

Note: The bold value represents the best score under each evaluation

metric.

*t denotes the average processing time in ms.

F IGURE 10 Number of images for different objects in the marine
image data set [Color figure can be viewed at wileyonlinelibrary.com]
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The left image of Figure 15 shows failures in obstacle detection

due to the strong reflection of the red buoy. In this case, the buoy

is over‐segmentation, meaning that portions of water are mis-

classified as obstacle, but the true obstacles that threaten USVs

are not mislabeled as water. A more dangerous case is shown in

Figure 15b, where the left part of the boat is incorrectly detected

as water because of visual similarity. Comparing the results with

Figure 14, we can find that our method is better in distinguishing

water region and lands than in distinguishing obstacles from water

region. This is mainly because our PEN is trained by the pixels

from the three dominant semantic regions, without using the

pixels from obstacles.

The method proposed in this paper only uses a few of simple

visual features to perform segmentation. In fact, there exists sig-

nificant difference in texture between obstacles and their sur-

roundings. In our future work, we will explore texture features or

deep features extracted by CNNs to further improve the segmen-

tation in the presence of strong reflection and obstacles visually

similar to water.

5 | LESSONS LEARNED

The obstacle detection method presented in this paper can be readily

applied to other surface ships to improve their autonomy. The ra-

pidity and efficacy of the method is helpful for USVs to realize real‐
time collision avoidance and safely execute their tasks. For practical

deployment of our obstacle detection system in a small USV, a few

lessons were learned as follows.

The marine scenes captured by USVs are subject to sunlight

conditions. Especially when the USV is directly facing the sun, it leads

to extreme changes in the contrast and color of images and even

causes a significant amount of fragmented glitter or bright areas on

the water surface. To improve the generalization of our PEN for the

enhancement of obstacle detection, it would be advantageous to

collect a more diverse training data set that covers a range of rea-

listic conditions encountered in a coastal surveillance task.

As described in Section 1, camera‐based obstacle detection

methods can detect not only objects that stand out from the water

but also flat objects. However, such methods still have difficulties in

(a) (b) (c) (d)

F IGURE 12 Example results of different methods on the MODD. The estimated sea edge is depicted by a green curve, while the obstacles in
the water region are depicted by yellow rectangles. It can be seen that PEN‐SSM is superior to SSM and SSM(S) in the presence of (a) small
obstacle (b) cluster of objects, (c) sun glitter, and (d) significant rolling. MODD, marine obstacle detection data set; PEN, prior estimation
network; SSM, semantic segmentation model [Color figure can be viewed at wileyonlinelibrary.com]
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detecting potential underwater obstacles for USVs, such as sub-

merged reefs and sunken ships. In addition, our current method only

works in the daytime. Further work is required to explore multi-

sensor fusion and expand the application to USVs at night.

The mixture model in the proposed framework only applies color

and position features to fit the semantic structure of marine en-

vironment and perform semantic segmentation. The experimental

results show that the model is sufficiently general to be directly

applied in most realistic marine scenes. However, it has limitations in

distinguishing obstacles and their strong reflections. Deep features

extracted by CNNs need to be explored to improve the segmentation

performance of the mixture model.

The application of the obstacle detection system in small USVs is

constrained by sea state. In fact, the camera mounted on a small

coastal USV may only capture the sky or water area under severe sea

conditions, resulting in the failure of obstacle detection. Installing the

(a) (b) (c) (d) (e) (f)

F IGURE 13 Example results of different methods on the MID data set. For each image, we show the estimated sea edge by a green
curve and the detected obstacle in the water region by a yellow rectangle. Below each image, the spatial part of the three semantic components
is depicted by three Gaussian ellipses, and the segmented water region is shown in blue. In terms of obstacle detection and sea edge
estimation, it can be seen that PEN‐SSM outperforms SSM and SSM(S) in the presence of (a)–(b) significant pitching, (c) oversized obstacles,
(d) sun glitter, (e) salient waves, and (f) visual blur caused by fog. MID, marine image data set; PEN, prior estimation network; SSM, semantic
segmentation model [Color figure can be viewed at wileyonlinelibrary.com]
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camera on a stable gimbal could help mitigate this problem and en-

sure that proper images are captured.

6 | CONCLUSION

In this paper, we introduced a novel semantic segmentation algo-

rithm based on a spatially constrained mixture model for real‐time

obstacle detection in marine environments. To avoid the EM pro-

cedure falling into a local minimum due to poor initial parameters, we

proposed a PEN for the initialization of model parameters. The

network is trained by a new weakly supervised E‐step. A series of

detailed experiments were conducted on a public MODD and our

data set (MID) to evaluate our method. Compared to the recent

state‐of‐the‐art SSM (Kristan et al., 2016), our algorithm achieved

15% improvement in sea edge estimation and a 3.3% increase in

F‐score on the MODD, and achieved 69.5% improvement in sea edge

estimation and a 39.2% increase in F‐score on our data set.

Our future work will focus on exploring texture features or deep

features extracted by CNNs to further improve segmentation in the

presence of strong reflection and confounding obstacles. Our future

work will also involve obstacle detection based on multisensor fusion

to expand the application of USVs at night, and apply the detection

results as feedback for collision avoidance.
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APPENDIX A

TABLE A1 Index to multimedia extensions

Extension Media type Description

1 Video It shows the experimental results in the presence of significant rolling and pitching

2 Video It shows the experimental results in the presence of fragmented sun glitter

3 Video It shows the experimental results in the presence of visual ambiguities caused by the unfavorable weather condition
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